On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models

Descripción del Articulo

This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed...

Descripción completa

Detalles Bibliográficos
Autores: Monge, JC, Mantari, JL, Yarasca, J, Arciniega, RA
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1169
Enlace del recurso:https://hdl.handle.net/20.500.12390/1169
https://doi.org/10.22055/JACM.2019.27297.1397
Nivel de acceso:acceso abierto
Materia:Ingeniería mecánica
Ingeniería civil
https://purl.org/pe-repo/ocde/ford#2.03.01
https://purl.org/pe-repo/ocde/ford#2.01.01
id CONC_b51454b6245b34054597d3e9c166c5d9
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1169
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
title On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
spellingShingle On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
Monge, JC
Ingeniería mecánica
Ingeniería civil
https://purl.org/pe-repo/ocde/ford#2.03.01
https://purl.org/pe-repo/ocde/ford#2.01.01
title_short On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
title_full On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
title_fullStr On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
title_full_unstemmed On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
title_sort On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models
author Monge, JC
author_facet Monge, JC
Mantari, JL
Yarasca, J
Arciniega, RA
author_role author
author2 Mantari, JL
Yarasca, J
Arciniega, RA
author2_role author
author
author
dc.contributor.author.fl_str_mv Monge, JC
Mantari, JL
Yarasca, J
Arciniega, RA
dc.subject.none.fl_str_mv Ingeniería mecánica
topic Ingeniería mecánica
Ingeniería civil
https://purl.org/pe-repo/ocde/ford#2.03.01
https://purl.org/pe-repo/ocde/ford#2.01.01
dc.subject.es_PE.fl_str_mv Ingeniería civil
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.03.01
https://purl.org/pe-repo/ocde/ford#2.01.01
description This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is subjected to different mechanical loads, specifically: bi-sinusoidal, uniform, patch, hydrostatic pressure and point load. The governing equations are derived from the Principle of Virtual displacement and solved via Navier-Type closed form solutions. The results are compared with results from Layer-wise solutions and different higher order shear deformation theories available. It is shown that refined models with non-polynomial terms are able to accurately predict the through-the-thickness displacement and stress distributions maintaining less computational effort compared to a Layer-wise models.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1169
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22055/JACM.2019.27297.1397
dc.identifier.isi.none.fl_str_mv 474883400006
url https://hdl.handle.net/20.500.12390/1169
https://doi.org/10.22055/JACM.2019.27297.1397
identifier_str_mv 474883400006
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Applied and Computational Mechanics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Shahid Chamran University of Ahvaz
publisher.none.fl_str_mv Shahid Chamran University of Ahvaz
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883026867126272
spelling Publicationrp01770500rp01200500rp03338600rp03339600Monge, JCMantari, JLYarasca, JArciniega, RA2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1169https://doi.org/10.22055/JACM.2019.27297.1397474883400006This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is subjected to different mechanical loads, specifically: bi-sinusoidal, uniform, patch, hydrostatic pressure and point load. The governing equations are derived from the Principle of Virtual displacement and solved via Navier-Type closed form solutions. The results are compared with results from Layer-wise solutions and different higher order shear deformation theories available. It is shown that refined models with non-polynomial terms are able to accurately predict the through-the-thickness displacement and stress distributions maintaining less computational effort compared to a Layer-wise models.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengShahid Chamran University of AhvazJournal of Applied and Computational Mechanicsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Ingeniería mecánicaIngeniería civil-1https://purl.org/pe-repo/ocde/ford#2.03.01-1https://purl.org/pe-repo/ocde/ford#2.01.01-1On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Modelsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1169oai:repositorio.concytec.gob.pe:20.500.12390/11692024-05-30 16:01:32.958https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="c27b5742-2a71-4a1d-824d-287a33690787"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models</Title> <PublishedIn> <Publication> <Title>Journal of Applied and Computational Mechanics</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.22055/JACM.2019.27297.1397</DOI> <ISI-Number>474883400006</ISI-Number> <Authors> <Author> <DisplayName>Monge, JC</DisplayName> <Person id="rp01770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mantari, JL</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yarasca, J</DisplayName> <Person id="rp03338" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arciniega, RA</DisplayName> <Person id="rp03339" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Shahid Chamran University of Ahvaz</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Ingeniería mecánica</Keyword> <Keyword>Ingeniería civil</Keyword> <Abstract>This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is subjected to different mechanical loads, specifically: bi-sinusoidal, uniform, patch, hydrostatic pressure and point load. The governing equations are derived from the Principle of Virtual displacement and solved via Navier-Type closed form solutions. The results are compared with results from Layer-wise solutions and different higher order shear deformation theories available. It is shown that refined models with non-polynomial terms are able to accurately predict the through-the-thickness displacement and stress distributions maintaining less computational effort compared to a Layer-wise models.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.08006
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).