Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities
Descripción del Articulo
The backscatter coefficient (BSC) describes the scattering properties of a medium and can be used to characterize tissue. To calculate the BSC a calibration spectrum is required, which can be acquired using either a reference phantom method (RPM) or the planar reflector method (PRM). Although ultras...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2837 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2837 https://doi.org/10.1109/ULTSYM.2019.8926055 |
Nivel de acceso: | acceso abierto |
Materia: | ultrasonic transducers biological tissues biomedical transducers biomedical ultrasonics calibration phantoms ultrasonic propagation ultrasonic scattering https://purl.org/pe-repo/ocde/ford#3.04.01 |
id |
CONC_9ccac05a8f1223f8f5c8372b49f743de |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2837 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
title |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
spellingShingle |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities Coila, Andres ultrasonic transducers biological tissues biomedical transducers biomedical ultrasonics calibration phantoms ultrasonic propagation ultrasonic scattering https://purl.org/pe-repo/ocde/ford#3.04.01 |
title_short |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
title_full |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
title_fullStr |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
title_full_unstemmed |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
title_sort |
Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities |
author |
Coila, Andres |
author_facet |
Coila, Andres Oelze, Michael |
author_role |
author |
author2 |
Oelze, Michael |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Coila, Andres Oelze, Michael |
dc.subject.none.fl_str_mv |
ultrasonic transducers |
topic |
ultrasonic transducers biological tissues biomedical transducers biomedical ultrasonics calibration phantoms ultrasonic propagation ultrasonic scattering https://purl.org/pe-repo/ocde/ford#3.04.01 |
dc.subject.es_PE.fl_str_mv |
biological tissues biomedical transducers biomedical ultrasonics calibration phantoms ultrasonic propagation ultrasonic scattering |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.04.01 |
description |
The backscatter coefficient (BSC) describes the scattering properties of a medium and can be used to characterize tissue. To calculate the BSC a calibration spectrum is required, which can be acquired using either a reference phantom method (RPM) or the planar reflector method (PRM). Although ultrasonic propagation is quasilinear at low acoustic pressures, for high acoustic pressures, acoustic nonlinear distortion becomes prevalent. Because water is low loss, use of the PRM method may introduce significant nonlinearities to the BSC estimation. In this study, we assessed the effects of the acoustic nonlinearities on BSC estimation when using the RPM and the PRM. Phantoms were scanned by exciting a single-element focused transducer (f/2) using one excitation level from low-power (LP) equipment (5800 PR, Panametrics Olympus, USA) and six excitation levels (EL1 to EL6) from high-power (HP) equipment (RAM-5000, Ritec, USA). This resulted in scanning the phantoms with increasingly higher pressures, but still within FDA limits for diagnostic ultrasound. The two phantoms, labelled phantoms A and B, had glass beads with diameters in the range 75-90 and 9-43 μm, respectively. The BSCs estimated with the LP system were used as a baseline. The normalized root-mean-squared error (RMSE) was calculated from BSCs estimated using the HP system with respect to the baseline. The BSC was parameterized to estimate the effective scatterer diameters (ESD) for each phantom using Faran's scattering theory. The BSC estimates resulted in smaller variations versus excitation levels for the RPM compared to the PRM. In the PRM, the RMSE was 0.62 ± 0.42 and 0.98 ± 0.77 for phantoms A and B, respectively; whereas, in the RPM, the RMSE was 0.21 ± 0.06 and 0.25 ± 0.12 for phantoms A and B, respectively. The ESD for the phantom A using the PRM decreased from 75 μm for EL1 to 39 μm for EL6; and using the RPM the ESD was 74.7 ± 2.3 μm across all settings. The ESD for the phantom B using the PRM decreas... |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2837 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ULTSYM.2019.8926055 |
url |
https://hdl.handle.net/20.500.12390/2837 https://doi.org/10.1109/ULTSYM.2019.8926055 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175406426521600 |
spelling |
Publicationrp07702600rp07703600Coila, AndresOelze, Michael2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2837https://doi.org/10.1109/ULTSYM.2019.8926055The backscatter coefficient (BSC) describes the scattering properties of a medium and can be used to characterize tissue. To calculate the BSC a calibration spectrum is required, which can be acquired using either a reference phantom method (RPM) or the planar reflector method (PRM). Although ultrasonic propagation is quasilinear at low acoustic pressures, for high acoustic pressures, acoustic nonlinear distortion becomes prevalent. Because water is low loss, use of the PRM method may introduce significant nonlinearities to the BSC estimation. In this study, we assessed the effects of the acoustic nonlinearities on BSC estimation when using the RPM and the PRM. Phantoms were scanned by exciting a single-element focused transducer (f/2) using one excitation level from low-power (LP) equipment (5800 PR, Panametrics Olympus, USA) and six excitation levels (EL1 to EL6) from high-power (HP) equipment (RAM-5000, Ritec, USA). This resulted in scanning the phantoms with increasingly higher pressures, but still within FDA limits for diagnostic ultrasound. The two phantoms, labelled phantoms A and B, had glass beads with diameters in the range 75-90 and 9-43 μm, respectively. The BSCs estimated with the LP system were used as a baseline. The normalized root-mean-squared error (RMSE) was calculated from BSCs estimated using the HP system with respect to the baseline. The BSC was parameterized to estimate the effective scatterer diameters (ESD) for each phantom using Faran's scattering theory. The BSC estimates resulted in smaller variations versus excitation levels for the RPM compared to the PRM. In the PRM, the RMSE was 0.62 ± 0.42 and 0.98 ± 0.77 for phantoms A and B, respectively; whereas, in the RPM, the RMSE was 0.21 ± 0.06 and 0.25 ± 0.12 for phantoms A and B, respectively. The ESD for the phantom A using the PRM decreased from 75 μm for EL1 to 39 μm for EL6; and using the RPM the ESD was 74.7 ± 2.3 μm across all settings. The ESD for the phantom B using the PRM decreas...Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengIEEE2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)info:eu-repo/semantics/openAccessultrasonic transducersbiological tissues-1biomedical transducers-1biomedical ultrasonics-1calibration-1phantoms-1ultrasonic propagation-1ultrasonic scattering-1https://purl.org/pe-repo/ocde/ford#3.04.01-1Backscatter Coefficient Estimation Bias under Acoustic Nonlinearitiesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2837oai:repositorio.concytec.gob.pe:20.500.12390/28372024-05-30 15:25:43.078http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="0aae1057-ec28-4c85-b878-69eeefcffc1f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Backscatter Coefficient Estimation Bias under Acoustic Nonlinearities</Title> <PublishedIn> <Publication> <Title>2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/ULTSYM.2019.8926055</DOI> <Authors> <Author> <DisplayName>Coila, Andres</DisplayName> <Person id="rp07702" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Oelze, Michael</DisplayName> <Person id="rp07703" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>ultrasonic transducers</Keyword> <Keyword>biological tissues</Keyword> <Keyword>biomedical transducers</Keyword> <Keyword>biomedical ultrasonics</Keyword> <Keyword>calibration</Keyword> <Keyword>phantoms</Keyword> <Keyword>ultrasonic propagation</Keyword> <Keyword>ultrasonic scattering</Keyword> <Abstract>The backscatter coefficient (BSC) describes the scattering properties of a medium and can be used to characterize tissue. To calculate the BSC a calibration spectrum is required, which can be acquired using either a reference phantom method (RPM) or the planar reflector method (PRM). Although ultrasonic propagation is quasilinear at low acoustic pressures, for high acoustic pressures, acoustic nonlinear distortion becomes prevalent. Because water is low loss, use of the PRM method may introduce significant nonlinearities to the BSC estimation. In this study, we assessed the effects of the acoustic nonlinearities on BSC estimation when using the RPM and the PRM. Phantoms were scanned by exciting a single-element focused transducer (f/2) using one excitation level from low-power (LP) equipment (5800 PR, Panametrics Olympus, USA) and six excitation levels (EL1 to EL6) from high-power (HP) equipment (RAM-5000, Ritec, USA). This resulted in scanning the phantoms with increasingly higher pressures, but still within FDA limits for diagnostic ultrasound. The two phantoms, labelled phantoms A and B, had glass beads with diameters in the range 75-90 and 9-43 μm, respectively. The BSCs estimated with the LP system were used as a baseline. The normalized root-mean-squared error (RMSE) was calculated from BSCs estimated using the HP system with respect to the baseline. The BSC was parameterized to estimate the effective scatterer diameters (ESD) for each phantom using Faran's scattering theory. The BSC estimates resulted in smaller variations versus excitation levels for the RPM compared to the PRM. In the PRM, the RMSE was 0.62 ± 0.42 and 0.98 ± 0.77 for phantoms A and B, respectively; whereas, in the RPM, the RMSE was 0.21 ± 0.06 and 0.25 ± 0.12 for phantoms A and B, respectively. The ESD for the phantom A using the PRM decreased from 75 μm for EL1 to 39 μm for EL6; and using the RPM the ESD was 74.7 ± 2.3 μm across all settings. The ESD for the phantom B using the PRM decreas...</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.243791 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).