Descriptive set theory for expansive systems
Descripción del Articulo
Kato [5] and Artigue [3] merged the theory of expansive systems [10] and foliations with the continuum theory [14]. Here we merge the expansive systems but with the descriptive set theory [6] instead. More precisely, we define meagre-expansivity for both homeomorphisms and measures by requiring the...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2880 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2880 https://doi.org/10.1016/j.jmaa.2017.12.014 |
| Nivel de acceso: | acceso abierto |
| Materia: | Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| id |
CONC_911f9b330aeb96ce44ab5a158ae8385e |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2880 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Descriptive set theory for expansive systems |
| title |
Descriptive set theory for expansive systems |
| spellingShingle |
Descriptive set theory for expansive systems Bautista, S. Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| title_short |
Descriptive set theory for expansive systems |
| title_full |
Descriptive set theory for expansive systems |
| title_fullStr |
Descriptive set theory for expansive systems |
| title_full_unstemmed |
Descriptive set theory for expansive systems |
| title_sort |
Descriptive set theory for expansive systems |
| author |
Bautista, S. |
| author_facet |
Bautista, S. Morales, C. A. Villavicencio, H. |
| author_role |
author |
| author2 |
Morales, C. A. Villavicencio, H. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Bautista, S. Morales, C. A. Villavicencio, H. |
| dc.subject.none.fl_str_mv |
Applied Mathematics |
| topic |
Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| dc.subject.es_PE.fl_str_mv |
Analysis |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
| description |
Kato [5] and Artigue [3] merged the theory of expansive systems [10] and foliations with the continuum theory [14]. Here we merge the expansive systems but with the descriptive set theory [6] instead. More precisely, we define meagre-expansivity for both homeomorphisms and measures by requiring the interior of the dynamical balls up to some prefixed radio to be either empty or with zero measure respectively. We first prove that every cw-expansive homeomorphism of a locally connected metric space without isolated points is meagre-expansive (but not conversely). Second that a homeomorphism of a metric space is meagre-expansive if and only if every Borel probability measure is meagre-expansive. Next that the space of meagre-expansive measures of a homeomorphism of a compact metric space X is an Fσ subset of the space of Borel probability measures equipped with the weak* topology. In the sequel we prove that every homeomorphism with a meagre-expansive measure of a compact metric space has an invariant meagre-expansive measure. Also that the set of periodic points of every meagre-expansive homeomorphism of a compact metric space has empty interior. In the circle or the interval we prove that there are no meagre-expansive homeomorphisms of the circle or the interval. Moreover, the meagre-expansive measures of an interval homeomorphism or a circle homeomorphism with rational rotation number are precisely the finite convex combinations of Dirac measures supported on isolated periodic points. A circle homeomorphism with irrational rotation number has a meagre-expansive measure if and only if it is a Denjoy map. In such a case the meagre-expansive measures are precisely those measures supported on the unique minimal set of the map. To obtain some of our results we will consider a measurable version of the classical Baire Category. © 2017 Elsevier Inc. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2880 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jmaa.2017.12.014 |
| url |
https://hdl.handle.net/20.500.12390/2880 https://doi.org/10.1016/j.jmaa.2017.12.014 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Elsevier BV |
| publisher.none.fl_str_mv |
Elsevier BV |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883126037250048 |
| spelling |
Publicationrp08023600rp07638600rp07641600Bautista, S.Morales, C. A.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/2880https://doi.org/10.1016/j.jmaa.2017.12.014Kato [5] and Artigue [3] merged the theory of expansive systems [10] and foliations with the continuum theory [14]. Here we merge the expansive systems but with the descriptive set theory [6] instead. More precisely, we define meagre-expansivity for both homeomorphisms and measures by requiring the interior of the dynamical balls up to some prefixed radio to be either empty or with zero measure respectively. We first prove that every cw-expansive homeomorphism of a locally connected metric space without isolated points is meagre-expansive (but not conversely). Second that a homeomorphism of a metric space is meagre-expansive if and only if every Borel probability measure is meagre-expansive. Next that the space of meagre-expansive measures of a homeomorphism of a compact metric space X is an Fσ subset of the space of Borel probability measures equipped with the weak* topology. In the sequel we prove that every homeomorphism with a meagre-expansive measure of a compact metric space has an invariant meagre-expansive measure. Also that the set of periodic points of every meagre-expansive homeomorphism of a compact metric space has empty interior. In the circle or the interval we prove that there are no meagre-expansive homeomorphisms of the circle or the interval. Moreover, the meagre-expansive measures of an interval homeomorphism or a circle homeomorphism with rational rotation number are precisely the finite convex combinations of Dirac measures supported on isolated periodic points. A circle homeomorphism with irrational rotation number has a meagre-expansive measure if and only if it is a Denjoy map. In such a case the meagre-expansive measures are precisely those measures supported on the unique minimal set of the map. To obtain some of our results we will consider a measurable version of the classical Baire Category. © 2017 Elsevier Inc.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengElsevier BVJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSinfo:eu-repo/semantics/openAccessApplied MathematicsAnalysis-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Descriptive set theory for expansive systemsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2880oai:repositorio.concytec.gob.pe:20.500.12390/28802024-05-30 15:25:55.299http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="75902008-5745-4f8d-807a-9ff2889da83e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Descriptive set theory for expansive systems</Title> <PublishedIn> <Publication> <Title>JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1016/j.jmaa.2017.12.014</DOI> <Authors> <Author> <DisplayName>Bautista, S.</DisplayName> <Person id="rp08023" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales, C. A.</DisplayName> <Person id="rp07638" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Applied Mathematics</Keyword> <Keyword>Analysis</Keyword> <Abstract>Kato [5] and Artigue [3] merged the theory of expansive systems [10] and foliations with the continuum theory [14]. Here we merge the expansive systems but with the descriptive set theory [6] instead. More precisely, we define meagre-expansivity for both homeomorphisms and measures by requiring the interior of the dynamical balls up to some prefixed radio to be either empty or with zero measure respectively. We first prove that every cw-expansive homeomorphism of a locally connected metric space without isolated points is meagre-expansive (but not conversely). Second that a homeomorphism of a metric space is meagre-expansive if and only if every Borel probability measure is meagre-expansive. Next that the space of meagre-expansive measures of a homeomorphism of a compact metric space X is an Fσ subset of the space of Borel probability measures equipped with the weak* topology. In the sequel we prove that every homeomorphism with a meagre-expansive measure of a compact metric space has an invariant meagre-expansive measure. Also that the set of periodic points of every meagre-expansive homeomorphism of a compact metric space has empty interior. In the circle or the interval we prove that there are no meagre-expansive homeomorphisms of the circle or the interval. Moreover, the meagre-expansive measures of an interval homeomorphism or a circle homeomorphism with rational rotation number are precisely the finite convex combinations of Dirac measures supported on isolated periodic points. A circle homeomorphism with irrational rotation number has a meagre-expansive measure if and only if it is a Denjoy map. In such a case the meagre-expansive measures are precisely those measures supported on the unique minimal set of the map. To obtain some of our results we will consider a measurable version of the classical Baire Category. © 2017 Elsevier Inc.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.918034 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).