Exploring double cross cyclic interpolation in unpaired image-to-image translation

Descripción del Articulo

The unpaired image-to-image translation consists of transferring a sample a in the domain A to an analog sample b in the domain B without intensive pixel-to-pixel supervision. The current vision focuses on learning a generative function that maps both domains but ignoring the latent information, alt...

Descripción completa

Detalles Bibliográficos
Autores: Lopez J., Mauricio A., Camara G.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2695
Enlace del recurso:https://hdl.handle.net/20.500.12390/2695
https://doi.org/10.1109/SIBGRAPI.2019.00025
Nivel de acceso:acceso abierto
Materia:Unpaired Image to Image Translation
Cross domain interpolation
Latent space exploration
http://purl.org/pe-repo/ocde/ford#2.02.03
Descripción
Sumario:The unpaired image-to-image translation consists of transferring a sample a in the domain A to an analog sample b in the domain B without intensive pixel-to-pixel supervision. The current vision focuses on learning a generative function that maps both domains but ignoring the latent information, although its exploration is not explicit supervision. This paper proposes a cross-domain GAN-based model to achieve a bi-directional translation guided by latent space supervision. The proposed architecture provides a double-loop cyclic reconstruction loss in an exchangeable training adopted to reduce mode collapse and enhance local details. Our proposal has outstanding results in visual quality, stability, and pixel-level segmentation metrics over different public datasets.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).