Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content

Descripción del Articulo

Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from...

Descripción completa

Detalles Bibliográficos
Autores: Ramos Guivar J.A., Bustamante D. A., Gonzalez J.C., Sanches E.A., Morales M.A., Raez J.M., López-Muñoz M.-J., Arencibia A.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/508
Enlace del recurso:https://hdl.handle.net/20.500.12390/508
https://doi.org/10.1016/j.apsusc.2018.04.248
Nivel de acceso:acceso abierto
Materia:Titanium oxides
Adsorption
Fourier transform infrared spectroscopy
Graphene
Nanocomposites
Nanoparticles
Permanent magnets
Precipitation (chemical)
Titanium dioxide
Adsorption capacities
id CONC_82779fdec63ee0547a9689213b91b064
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/508
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
title Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
spellingShingle Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
Ramos Guivar J.A.
Titanium oxides
Adsorption
Fourier transform infrared spectroscopy
Graphene
Nanocomposites
Nanoparticles
Permanent magnets
Precipitation (chemical)
Titanium dioxide
Titanium dioxide
Adsorption capacities
title_short Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
title_full Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
title_fullStr Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
title_full_unstemmed Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
title_sort Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
author Ramos Guivar J.A.
author_facet Ramos Guivar J.A.
Bustamante D. A.
Gonzalez J.C.
Sanches E.A.
Morales M.A.
Raez J.M.
López-Muñoz M.-J.
Arencibia A.
author_role author
author2 Bustamante D. A.
Gonzalez J.C.
Sanches E.A.
Morales M.A.
Raez J.M.
López-Muñoz M.-J.
Arencibia A.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ramos Guivar J.A.
Bustamante D. A.
Gonzalez J.C.
Sanches E.A.
Morales M.A.
Raez J.M.
López-Muñoz M.-J.
Arencibia A.
dc.subject.none.fl_str_mv Titanium oxides
topic Titanium oxides
Adsorption
Fourier transform infrared spectroscopy
Graphene
Nanocomposites
Nanoparticles
Permanent magnets
Precipitation (chemical)
Titanium dioxide
Titanium dioxide
Adsorption capacities
dc.subject.es_PE.fl_str_mv Adsorption
Fourier transform infrared spectroscopy
Graphene
Nanocomposites
Nanoparticles
Permanent magnets
Precipitation (chemical)
Titanium dioxide
Titanium dioxide
Adsorption capacities
description Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/508
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.apsusc.2018.04.248
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85047424710
url https://hdl.handle.net/20.500.12390/508
https://doi.org/10.1016/j.apsusc.2018.04.248
identifier_str_mv 2-s2.0-85047424710
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Applied Surface Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883074686386176
spelling Publicationrp00676600rp00677600rp00681600rp00682600rp00678600rp00680600rp00679600rp00683600Ramos Guivar J.A.Bustamante D. A.Gonzalez J.C.Sanches E.A.Morales M.A.Raez J.M.López-Muñoz M.-J.Arencibia A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/508https://doi.org/10.1016/j.apsusc.2018.04.2482-s2.0-85047424710Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevierApplied Surface Scienceinfo:eu-repo/semantics/openAccessTitanium oxidesAdsorption-1Fourier transform infrared spectroscopy-1Graphene-1Nanocomposites-1Nanoparticles-1Permanent magnets-1Precipitation (chemical)-1Titanium dioxide-1Titanium dioxide-1Adsorption capacities-1Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide contentinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/508oai:repositorio.concytec.gob.pe:20.500.12390/5082025-09-23 15:26:02.894http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="350b418b-8e26-4bd3-95f8-f772e58ed07f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content</Title> <PublishedIn> <Publication> <Title>Applied Surface Science</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1016/j.apsusc.2018.04.248</DOI> <SCP-Number>2-s2.0-85047424710</SCP-Number> <Authors> <Author> <DisplayName>Ramos Guivar J.A.</DisplayName> <Person id="rp00676" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bustamante D. A.</DisplayName> <Person id="rp00677" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gonzalez J.C.</DisplayName> <Person id="rp00681" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sanches E.A.</DisplayName> <Person id="rp00682" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales M.A.</DisplayName> <Person id="rp00678" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Raez J.M.</DisplayName> <Person id="rp00680" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>López-Muñoz M.-J.</DisplayName> <Person id="rp00679" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arencibia A.</DisplayName> <Person id="rp00683" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Titanium oxides</Keyword> <Keyword>Adsorption</Keyword> <Keyword>Fourier transform infrared spectroscopy</Keyword> <Keyword>Graphene</Keyword> <Keyword>Nanocomposites</Keyword> <Keyword>Nanoparticles</Keyword> <Keyword>Permanent magnets</Keyword> <Keyword>Precipitation (chemical)</Keyword> <Keyword>Titanium dioxide</Keyword> <Keyword>Titanium dioxide</Keyword> <Keyword>Adsorption capacities</Keyword> <Abstract>Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.894945
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).