Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content
Descripción del Articulo
Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/508 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/508 https://doi.org/10.1016/j.apsusc.2018.04.248 |
Nivel de acceso: | acceso abierto |
Materia: | Titanium oxides Adsorption Fourier transform infrared spectroscopy Graphene Nanocomposites Nanoparticles Permanent magnets Precipitation (chemical) Titanium dioxide Adsorption capacities |
id |
CONC_82779fdec63ee0547a9689213b91b064 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/508 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
title |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
spellingShingle |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content Ramos Guivar J.A. Titanium oxides Adsorption Fourier transform infrared spectroscopy Graphene Nanocomposites Nanoparticles Permanent magnets Precipitation (chemical) Titanium dioxide Titanium dioxide Adsorption capacities |
title_short |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
title_full |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
title_fullStr |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
title_full_unstemmed |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
title_sort |
Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content |
author |
Ramos Guivar J.A. |
author_facet |
Ramos Guivar J.A. Bustamante D. A. Gonzalez J.C. Sanches E.A. Morales M.A. Raez J.M. López-Muñoz M.-J. Arencibia A. |
author_role |
author |
author2 |
Bustamante D. A. Gonzalez J.C. Sanches E.A. Morales M.A. Raez J.M. López-Muñoz M.-J. Arencibia A. |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Ramos Guivar J.A. Bustamante D. A. Gonzalez J.C. Sanches E.A. Morales M.A. Raez J.M. López-Muñoz M.-J. Arencibia A. |
dc.subject.none.fl_str_mv |
Titanium oxides |
topic |
Titanium oxides Adsorption Fourier transform infrared spectroscopy Graphene Nanocomposites Nanoparticles Permanent magnets Precipitation (chemical) Titanium dioxide Titanium dioxide Adsorption capacities |
dc.subject.es_PE.fl_str_mv |
Adsorption Fourier transform infrared spectroscopy Graphene Nanocomposites Nanoparticles Permanent magnets Precipitation (chemical) Titanium dioxide Titanium dioxide Adsorption capacities |
description |
Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/508 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.apsusc.2018.04.248 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85047424710 |
url |
https://hdl.handle.net/20.500.12390/508 https://doi.org/10.1016/j.apsusc.2018.04.248 |
identifier_str_mv |
2-s2.0-85047424710 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Applied Surface Science |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883074686386176 |
spelling |
Publicationrp00676600rp00677600rp00681600rp00682600rp00678600rp00680600rp00679600rp00683600Ramos Guivar J.A.Bustamante D. A.Gonzalez J.C.Sanches E.A.Morales M.A.Raez J.M.López-Muñoz M.-J.Arencibia A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/508https://doi.org/10.1016/j.apsusc.2018.04.2482-s2.0-85047424710Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevierApplied Surface Scienceinfo:eu-repo/semantics/openAccessTitanium oxidesAdsorption-1Fourier transform infrared spectroscopy-1Graphene-1Nanocomposites-1Nanoparticles-1Permanent magnets-1Precipitation (chemical)-1Titanium dioxide-1Titanium dioxide-1Adsorption capacities-1Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide contentinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/508oai:repositorio.concytec.gob.pe:20.500.12390/5082025-09-23 15:26:02.894http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="350b418b-8e26-4bd3-95f8-f772e58ed07f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content</Title> <PublishedIn> <Publication> <Title>Applied Surface Science</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1016/j.apsusc.2018.04.248</DOI> <SCP-Number>2-s2.0-85047424710</SCP-Number> <Authors> <Author> <DisplayName>Ramos Guivar J.A.</DisplayName> <Person id="rp00676" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bustamante D. A.</DisplayName> <Person id="rp00677" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gonzalez J.C.</DisplayName> <Person id="rp00681" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sanches E.A.</DisplayName> <Person id="rp00682" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales M.A.</DisplayName> <Person id="rp00678" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Raez J.M.</DisplayName> <Person id="rp00680" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>López-Muñoz M.-J.</DisplayName> <Person id="rp00679" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arencibia A.</DisplayName> <Person id="rp00683" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Titanium oxides</Keyword> <Keyword>Adsorption</Keyword> <Keyword>Fourier transform infrared spectroscopy</Keyword> <Keyword>Graphene</Keyword> <Keyword>Nanocomposites</Keyword> <Keyword>Nanoparticles</Keyword> <Keyword>Permanent magnets</Keyword> <Keyword>Precipitation (chemical)</Keyword> <Keyword>Titanium dioxide</Keyword> <Keyword>Titanium dioxide</Keyword> <Keyword>Adsorption capacities</Keyword> <Abstract>Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites made with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap coprecipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, with these nanocomposites having a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2 /g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, and can be fast separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.894945 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).