Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes
Descripción del Articulo
Los dispositivos electrónicos formados por semiconductores se encuentran conectados con otros terminales externos por medio de contactos metálicos, los cuales forman las conexiones dentro de los circuitos integrados. A través de estos contactos es por donde el flujo de portadores de carga entra y sa...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1844 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1844 |
Nivel de acceso: | acceso abierto |
Materia: | Silicio Semiconductores https://purl.org/pe-repo/ocde/ford#1.03.00 |
id |
CONC_81f07cf38591d58a05d38f3cf180a8dc |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1844 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
title |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
spellingShingle |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes Pretell Valero, Luis Jonathan Silicio Semiconductores https://purl.org/pe-repo/ocde/ford#1.03.00 |
title_short |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
title_full |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
title_fullStr |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
title_full_unstemmed |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
title_sort |
Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes |
author |
Pretell Valero, Luis Jonathan |
author_facet |
Pretell Valero, Luis Jonathan |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pretell Valero, Luis Jonathan |
dc.subject.none.fl_str_mv |
Silicio |
topic |
Silicio Semiconductores https://purl.org/pe-repo/ocde/ford#1.03.00 |
dc.subject.es_PE.fl_str_mv |
Semiconductores |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.03.00 |
description |
Los dispositivos electrónicos formados por semiconductores se encuentran conectados con otros terminales externos por medio de contactos metálicos, los cuales forman las conexiones dentro de los circuitos integrados. A través de estos contactos es por donde el flujo de portadores de carga entra y sale de un dispositivo a otro, al aplicarles una diferencia de potencial. Los contactos pueden ser: Schottky, aquellos que conducen carga en un sentido a baja resistencia y en el otro sentido ofrecen más alta resistencia, u óhmicos, los cuales ofrecen una baja resistencia al paso de la corriente en ambos sentidos. Es de interés obtener contactos óhmicos a partir de contactos Schottky por medio de tratamientos térmicos. Los contactos Schottky resultaron al evaporar aluminio sobre muestras de silicio de distintos dopajes, los cuales se fabricaron por Deposición Física de Vapor. Para analizar el proceso de formación de contacto óhmico en las muestras, estas se caracterizaron electrónicamente por medio de las curvas densidad de corriente vs. voltaje (J-V ), antes y después de los tratamientos térmicos, para las temperaturas de 500_C, 550_C y 600_C cada una por 10 min. Los contactos Schottky obtenidos en las muestras de silicio tipo p, con un tratamiento térmico a 500_C, se comportaron como contacto óhmico. Para los siguientes tratamientos térmicos (550_C y 600_C), la resistencia de contacto aumenta, debido a que en la interfaz silicio-aluminio se forma una región cargada p+, la cual frenará la conducción por emisión térmica. Se observa también que, a mayor dopaje en las muestras, la resistencia de contacto es menor, ya que el transporte por tunelaje a través de la barrera comienza a dominar. Los contactos Schottky obtenidos en las muestras de silicio tipo n, con un tratamiento térmico a 500_C, mejora la conducción en las muestras de bajo dopaje, mientras que en la de alto dopaje la resistencia aumenta. Esto debido a la capa p+ que se forma en la interfaz del silicio-aluminio y, con los siguientes tratamientos térmicos (550_C y 600_C), la región p+ crece. Las resistencias de contacto aumentan en la muestra de bajo dopaje, en las de medio dopaje desaparece la barrera Schottky, y en la muestra de alto dopaje la región de carga espacial sufre una inversión, formándose un contacto Schottky de silicio tipo p |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1844 |
url |
https://hdl.handle.net/20.500.12390/1844 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883012450254848 |
spelling |
Publicationrp04811600Pretell Valero, Luis Jonathan2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1844Los dispositivos electrónicos formados por semiconductores se encuentran conectados con otros terminales externos por medio de contactos metálicos, los cuales forman las conexiones dentro de los circuitos integrados. A través de estos contactos es por donde el flujo de portadores de carga entra y sale de un dispositivo a otro, al aplicarles una diferencia de potencial. Los contactos pueden ser: Schottky, aquellos que conducen carga en un sentido a baja resistencia y en el otro sentido ofrecen más alta resistencia, u óhmicos, los cuales ofrecen una baja resistencia al paso de la corriente en ambos sentidos. Es de interés obtener contactos óhmicos a partir de contactos Schottky por medio de tratamientos térmicos. Los contactos Schottky resultaron al evaporar aluminio sobre muestras de silicio de distintos dopajes, los cuales se fabricaron por Deposición Física de Vapor. Para analizar el proceso de formación de contacto óhmico en las muestras, estas se caracterizaron electrónicamente por medio de las curvas densidad de corriente vs. voltaje (J-V ), antes y después de los tratamientos térmicos, para las temperaturas de 500_C, 550_C y 600_C cada una por 10 min. Los contactos Schottky obtenidos en las muestras de silicio tipo p, con un tratamiento térmico a 500_C, se comportaron como contacto óhmico. Para los siguientes tratamientos térmicos (550_C y 600_C), la resistencia de contacto aumenta, debido a que en la interfaz silicio-aluminio se forma una región cargada p+, la cual frenará la conducción por emisión térmica. Se observa también que, a mayor dopaje en las muestras, la resistencia de contacto es menor, ya que el transporte por tunelaje a través de la barrera comienza a dominar. Los contactos Schottky obtenidos en las muestras de silicio tipo n, con un tratamiento térmico a 500_C, mejora la conducción en las muestras de bajo dopaje, mientras que en la de alto dopaje la resistencia aumenta. Esto debido a la capa p+ que se forma en la interfaz del silicio-aluminio y, con los siguientes tratamientos térmicos (550_C y 600_C), la región p+ crece. Las resistencias de contacto aumentan en la muestra de bajo dopaje, en las de medio dopaje desaparece la barrera Schottky, y en la muestra de alto dopaje la región de carga espacial sufre una inversión, formándose un contacto Schottky de silicio tipo pFondo Nacional de Desarrollo Científico y Tecnológico - FondecytspaPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/SilicioSemiconductores-1https://purl.org/pe-repo/ocde/ford#1.03.00-1Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajesinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en FísicaFísicaPontificia Universidad Católica del Perú. Escuela de Postgrado20.500.12390/1844oai:repositorio.concytec.gob.pe:20.500.12390/18442024-05-30 15:40:52.593http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="a8b561c8-11bb-44b6-a36b-38899ad22f00"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Caracterización eléctrica de contactos de aluminio fabricados por deposición física de vapor sobre obleas de Silicio de distintos dopajes</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>Pretell Valero, Luis Jonathan</DisplayName> <Person id="rp04811" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc-nd/2.5/pe/</License> <Keyword>Silicio</Keyword> <Keyword>Semiconductores</Keyword> <Abstract>Los dispositivos electrónicos formados por semiconductores se encuentran conectados con otros terminales externos por medio de contactos metálicos, los cuales forman las conexiones dentro de los circuitos integrados. A través de estos contactos es por donde el flujo de portadores de carga entra y sale de un dispositivo a otro, al aplicarles una diferencia de potencial. Los contactos pueden ser: Schottky, aquellos que conducen carga en un sentido a baja resistencia y en el otro sentido ofrecen más alta resistencia, u óhmicos, los cuales ofrecen una baja resistencia al paso de la corriente en ambos sentidos. Es de interés obtener contactos óhmicos a partir de contactos Schottky por medio de tratamientos térmicos. Los contactos Schottky resultaron al evaporar aluminio sobre muestras de silicio de distintos dopajes, los cuales se fabricaron por Deposición Física de Vapor. Para analizar el proceso de formación de contacto óhmico en las muestras, estas se caracterizaron electrónicamente por medio de las curvas densidad de corriente vs. voltaje (J-V ), antes y después de los tratamientos térmicos, para las temperaturas de 500_C, 550_C y 600_C cada una por 10 min. Los contactos Schottky obtenidos en las muestras de silicio tipo p, con un tratamiento térmico a 500_C, se comportaron como contacto óhmico. Para los siguientes tratamientos térmicos (550_C y 600_C), la resistencia de contacto aumenta, debido a que en la interfaz silicio-aluminio se forma una región cargada p+, la cual frenará la conducción por emisión térmica. Se observa también que, a mayor dopaje en las muestras, la resistencia de contacto es menor, ya que el transporte por tunelaje a través de la barrera comienza a dominar. Los contactos Schottky obtenidos en las muestras de silicio tipo n, con un tratamiento térmico a 500_C, mejora la conducción en las muestras de bajo dopaje, mientras que en la de alto dopaje la resistencia aumenta. Esto debido a la capa p+ que se forma en la interfaz del silicio-aluminio y, con los siguientes tratamientos térmicos (550_C y 600_C), la región p+ crece. Las resistencias de contacto aumentan en la muestra de bajo dopaje, en las de medio dopaje desaparece la barrera Schottky, y en la muestra de alto dopaje la región de carga espacial sufre una inversión, formándose un contacto Schottky de silicio tipo p</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.4721 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).