Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques

Descripción del Articulo

One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supe...

Descripción completa

Detalles Bibliográficos
Autores: Almeyda E., Paiva J., Ipanaque W.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2472
Enlace del recurso:https://hdl.handle.net/20.500.12390/2472
https://doi.org/10.1109/EIRCON51178.2020.9254034
Nivel de acceso:acceso abierto
Materia:trips
binary classification
logistic regression
machine learning
organic banana
pest
support vector machine
http://purl.org/pe-repo/ocde/ford#4.01.01
id CONC_7cd102723bbfea05a833ee5342ec39fa
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2472
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
title Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
spellingShingle Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
Almeyda E.
trips
binary classification
logistic regression
machine learning
organic banana
pest
pest
support vector machine
http://purl.org/pe-repo/ocde/ford#4.01.01
title_short Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
title_full Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
title_fullStr Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
title_full_unstemmed Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
title_sort Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
author Almeyda E.
author_facet Almeyda E.
Paiva J.
Ipanaque W.
author_role author
author2 Paiva J.
Ipanaque W.
author2_role author
author
dc.contributor.author.fl_str_mv Almeyda E.
Paiva J.
Ipanaque W.
dc.subject.none.fl_str_mv trips
topic trips
binary classification
logistic regression
machine learning
organic banana
pest
pest
support vector machine
http://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.es_PE.fl_str_mv binary classification
logistic regression
machine learning
organic banana
pest
pest
support vector machine
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.01.01
description One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2472
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254034
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097831855
url https://hdl.handle.net/20.500.12390/2472
https://doi.org/10.1109/EIRCON51178.2020.9254034
identifier_str_mv 2-s2.0-85097831855
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882992177086464
spelling Publicationrp06270600rp06269600rp05418600Almeyda E.Paiva J.Ipanaque W.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2472https://doi.org/10.1109/EIRCON51178.2020.92540342-s2.0-85097831855One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccesstripsbinary classification-1logistic regression-1machine learning-1organic banana-1pest-1pest-1support vector machine-1http://purl.org/pe-repo/ocde/ford#4.01.01-1Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniquesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2472oai:repositorio.concytec.gob.pe:20.500.12390/24722024-05-30 15:24:47.178http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="806b0a1c-42a1-4952-82f1-bea892eee6b4"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254034</DOI> <SCP-Number>2-s2.0-85097831855</SCP-Number> <Authors> <Author> <DisplayName>Almeyda E.</DisplayName> <Person id="rp06270" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Paiva J.</DisplayName> <Person id="rp06269" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ipanaque W.</DisplayName> <Person id="rp05418" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>trips</Keyword> <Keyword>binary classification</Keyword> <Keyword>logistic regression</Keyword> <Keyword>machine learning</Keyword> <Keyword>organic banana</Keyword> <Keyword>pest</Keyword> <Keyword>pest</Keyword> <Keyword>support vector machine</Keyword> <Abstract>One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.856838
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).