Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques
Descripción del Articulo
One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supe...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2472 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2472 https://doi.org/10.1109/EIRCON51178.2020.9254034 |
| Nivel de acceso: | acceso abierto |
| Materia: | trips binary classification logistic regression machine learning organic banana pest support vector machine http://purl.org/pe-repo/ocde/ford#4.01.01 |
| id |
CONC_7cd102723bbfea05a833ee5342ec39fa |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2472 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| title |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| spellingShingle |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques Almeyda E. trips binary classification logistic regression machine learning organic banana pest pest support vector machine http://purl.org/pe-repo/ocde/ford#4.01.01 |
| title_short |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| title_full |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| title_fullStr |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| title_full_unstemmed |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| title_sort |
Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques |
| author |
Almeyda E. |
| author_facet |
Almeyda E. Paiva J. Ipanaque W. |
| author_role |
author |
| author2 |
Paiva J. Ipanaque W. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Almeyda E. Paiva J. Ipanaque W. |
| dc.subject.none.fl_str_mv |
trips |
| topic |
trips binary classification logistic regression machine learning organic banana pest pest support vector machine http://purl.org/pe-repo/ocde/ford#4.01.01 |
| dc.subject.es_PE.fl_str_mv |
binary classification logistic regression machine learning organic banana pest pest support vector machine |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#4.01.01 |
| description |
One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2472 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EIRCON51178.2020.9254034 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85097831855 |
| url |
https://hdl.handle.net/20.500.12390/2472 https://doi.org/10.1109/EIRCON51178.2020.9254034 |
| identifier_str_mv |
2-s2.0-85097831855 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844882992177086464 |
| spelling |
Publicationrp06270600rp06269600rp05418600Almeyda E.Paiva J.Ipanaque W.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2472https://doi.org/10.1109/EIRCON51178.2020.92540342-s2.0-85097831855One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccesstripsbinary classification-1logistic regression-1machine learning-1organic banana-1pest-1pest-1support vector machine-1http://purl.org/pe-repo/ocde/ford#4.01.01-1Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniquesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2472oai:repositorio.concytec.gob.pe:20.500.12390/24722024-05-30 15:24:47.178http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="806b0a1c-42a1-4952-82f1-bea892eee6b4"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Pest Incidence Prediction in Organic Banana Crops with Machine Learning Techniques</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254034</DOI> <SCP-Number>2-s2.0-85097831855</SCP-Number> <Authors> <Author> <DisplayName>Almeyda E.</DisplayName> <Person id="rp06270" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Paiva J.</DisplayName> <Person id="rp06269" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ipanaque W.</DisplayName> <Person id="rp05418" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>trips</Keyword> <Keyword>binary classification</Keyword> <Keyword>logistic regression</Keyword> <Keyword>machine learning</Keyword> <Keyword>organic banana</Keyword> <Keyword>pest</Keyword> <Keyword>pest</Keyword> <Keyword>support vector machine</Keyword> <Abstract>One of the main problems organic banana crops is the presence of pests, affecting crop yield, post-harvest and export fruit quality. In Piura (Peru), pests with the greatest presence are Thrips, Squamas, Black Weevil, etc. This article describes the development of a prediction model, based on a supervised machine learning algorithm: Logistic Regression and Support Vector Machine, which will estimate the future level of incidence (low and medium) of a specific pest. The model was designed including the input data (climate) that were obtained from a network of IoT sensors in-situ in the banana crop, and output data (level of incidence) that was collected with manual record and visual inspection. The model developed can predict pest incidence at 79% accuracy (with test data). These first results show feasibility to estimate in advance the incidence of pests in that crop. Future implementation of the model would help to farmers improving the pest management to their crops, increasing the production and quality of the product. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.856838 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).