Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
Descripción del Articulo
The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2697 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2697 https://doi.org/10.1109/SIBGRAPI.2019.00017 |
Nivel de acceso: | acceso abierto |
Materia: | Semantic image segmentation Biomedical imaging Cardiac image analysis Deep learning http://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
CONC_7c5111be80a9551fa88b0e6130f2f51e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2697 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
title |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
spellingShingle |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation Gutierrez-Castilla N. Semantic image segmentation Biomedical imaging Cardiac image analysis Deep learning http://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
title_full |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
title_fullStr |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
title_full_unstemmed |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
title_sort |
Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation |
author |
Gutierrez-Castilla N. |
author_facet |
Gutierrez-Castilla N. Da Torres R. Falcao A.X. Kozerke S. Schwitter J. Masci P.-G. Montoya-Zegarra J.A. |
author_role |
author |
author2 |
Da Torres R. Falcao A.X. Kozerke S. Schwitter J. Masci P.-G. Montoya-Zegarra J.A. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Gutierrez-Castilla N. Da Torres R. Falcao A.X. Kozerke S. Schwitter J. Masci P.-G. Montoya-Zegarra J.A. |
dc.subject.none.fl_str_mv |
Semantic image segmentation |
topic |
Semantic image segmentation Biomedical imaging Cardiac image analysis Deep learning http://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Biomedical imaging Cardiac image analysis Deep learning |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient's health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2697 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/SIBGRAPI.2019.00017 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85077065453 |
url |
https://hdl.handle.net/20.500.12390/2697 https://doi.org/10.1109/SIBGRAPI.2019.00017 |
identifier_str_mv |
2-s2.0-85077065453 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175468507463680 |
spelling |
Publicationrp07177600rp07174600rp07172600rp07176600rp07178600rp07173600rp07175600Gutierrez-Castilla N.Da Torres R.Falcao A.X.Kozerke S.Schwitter J.Masci P.-G.Montoya-Zegarra J.A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2697https://doi.org/10.1109/SIBGRAPI.2019.000172-s2.0-85077065453The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient's health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019info:eu-repo/semantics/openAccessSemantic image segmentationBiomedical imaging-1Cardiac image analysis-1Deep learning-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2697oai:repositorio.concytec.gob.pe:20.500.12390/26972024-05-30 15:42:31.329http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="26985900-9dec-4fe8-8777-52fa91d00e19"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation</Title> <PublishedIn> <Publication> <Title>Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/SIBGRAPI.2019.00017</DOI> <SCP-Number>2-s2.0-85077065453</SCP-Number> <Authors> <Author> <DisplayName>Gutierrez-Castilla N.</DisplayName> <Person id="rp07177" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Da Torres R.</DisplayName> <Person id="rp07174" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Falcao A.X.</DisplayName> <Person id="rp07172" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kozerke S.</DisplayName> <Person id="rp07176" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schwitter J.</DisplayName> <Person id="rp07178" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Masci P.-G.</DisplayName> <Person id="rp07173" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Montoya-Zegarra J.A.</DisplayName> <Person id="rp07175" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Semantic image segmentation</Keyword> <Keyword>Biomedical imaging</Keyword> <Keyword>Cardiac image analysis</Keyword> <Keyword>Deep learning</Keyword> <Abstract>The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient's health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.210282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).