Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation

Descripción del Articulo

The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez-Castilla N., Da Torres R., Falcao A.X., Kozerke S., Schwitter J., Masci P.-G., Montoya-Zegarra J.A.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2697
Enlace del recurso:https://hdl.handle.net/20.500.12390/2697
https://doi.org/10.1109/SIBGRAPI.2019.00017
Nivel de acceso:acceso abierto
Materia:Semantic image segmentation
Biomedical imaging
Cardiac image analysis
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_7c5111be80a9551fa88b0e6130f2f51e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2697
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
title Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
spellingShingle Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
Gutierrez-Castilla N.
Semantic image segmentation
Biomedical imaging
Cardiac image analysis
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.03
title_short Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
title_full Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
title_fullStr Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
title_full_unstemmed Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
title_sort Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation
author Gutierrez-Castilla N.
author_facet Gutierrez-Castilla N.
Da Torres R.
Falcao A.X.
Kozerke S.
Schwitter J.
Masci P.-G.
Montoya-Zegarra J.A.
author_role author
author2 Da Torres R.
Falcao A.X.
Kozerke S.
Schwitter J.
Masci P.-G.
Montoya-Zegarra J.A.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gutierrez-Castilla N.
Da Torres R.
Falcao A.X.
Kozerke S.
Schwitter J.
Masci P.-G.
Montoya-Zegarra J.A.
dc.subject.none.fl_str_mv Semantic image segmentation
topic Semantic image segmentation
Biomedical imaging
Cardiac image analysis
Deep learning
http://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Biomedical imaging
Cardiac image analysis
Deep learning
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.03
description The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient's health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2697
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/SIBGRAPI.2019.00017
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85077065453
url https://hdl.handle.net/20.500.12390/2697
https://doi.org/10.1109/SIBGRAPI.2019.00017
identifier_str_mv 2-s2.0-85077065453
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175468507463680
spelling Publicationrp07177600rp07174600rp07172600rp07176600rp07178600rp07173600rp07175600Gutierrez-Castilla N.Da Torres R.Falcao A.X.Kozerke S.Schwitter J.Masci P.-G.Montoya-Zegarra J.A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2697https://doi.org/10.1109/SIBGRAPI.2019.000172-s2.0-85077065453The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient's health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019info:eu-repo/semantics/openAccessSemantic image segmentationBiomedical imaging-1Cardiac image analysis-1Deep learning-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2697oai:repositorio.concytec.gob.pe:20.500.12390/26972024-05-30 15:42:31.329http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="26985900-9dec-4fe8-8777-52fa91d00e19"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Long-range decoder skip connections: Exploiting multi-context information for cardiac image segmentation</Title> <PublishedIn> <Publication> <Title>Proceedings - 32nd Conference on Graphics, Patterns and Images, SIBGRAPI 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/SIBGRAPI.2019.00017</DOI> <SCP-Number>2-s2.0-85077065453</SCP-Number> <Authors> <Author> <DisplayName>Gutierrez-Castilla N.</DisplayName> <Person id="rp07177" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Da Torres R.</DisplayName> <Person id="rp07174" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Falcao A.X.</DisplayName> <Person id="rp07172" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kozerke S.</DisplayName> <Person id="rp07176" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schwitter J.</DisplayName> <Person id="rp07178" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Masci P.-G.</DisplayName> <Person id="rp07173" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Montoya-Zegarra J.A.</DisplayName> <Person id="rp07175" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Semantic image segmentation</Keyword> <Keyword>Biomedical imaging</Keyword> <Keyword>Cardiac image analysis</Keyword> <Keyword>Deep learning</Keyword> <Abstract>The heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient&apos;s health. The problem is that examination of these stacks, often based on the delineation of heart structures, is tedious and error prone due to inter-and intra-variability among manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net [1], have demonstrated to be very effective architectures for medical image segmentation. In this paper, we propose to use long-range skip connections on the decoder-part to incorporate multi-context information onto the predicted segmentation masks and also to improve the generalization of the models. In addition, our method obtains smoother segmentations through the combination of feature maps from different stages onto the final prediction layer. We evaluate our approach in the ACDC [2] and LVSC [3] heart segmentation challenges. Experiments performed on both datasets demonstrate that our approach leads to an improvement on both the total Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).