Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa
Descripción del Articulo
En este trabajo de tesis se parte de la hipótesis de que: es posible aumentar la eficiencia de las plantas desalinizadoras de agua de mar utilizando sistemas de control inteligente, conformados por controladores multivariables fundamentados en redes neuronales artificiales y modelos matemáticos mult...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2016 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/292 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/292 |
Nivel de acceso: | acceso abierto |
Materia: | Desalinización Agua de mar https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
CONC_739ce720a846e71643d3d39b638050ef |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/292 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
title |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
spellingShingle |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa Carrasco Banda, Neil Neizer Desalinización Agua de mar https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
title_full |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
title_fullStr |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
title_full_unstemmed |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
title_sort |
Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa |
author |
Carrasco Banda, Neil Neizer |
author_facet |
Carrasco Banda, Neil Neizer |
author_role |
author |
dc.contributor.author.fl_str_mv |
Carrasco Banda, Neil Neizer |
dc.subject.none.fl_str_mv |
Desalinización |
topic |
Desalinización Agua de mar https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Agua de mar |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
En este trabajo de tesis se parte de la hipótesis de que: es posible aumentar la eficiencia de las plantas desalinizadoras de agua de mar utilizando sistemas de control inteligente, conformados por controladores multivariables fundamentados en redes neuronales artificiales y modelos matemáticos multivariables basados en las leyes de conservación de la materia y energía. Se empieza describiendo las tecnologías empleadas a nivel industrial para la desalinización de agua, y se continúa con una revisión del estado del arte del modelado y control de las plantas desalinizadoras que se basan en ósmosis inversa. Luego, teniendo en cuenta la polarización de la concentración y utilizando el modelo de solución-difusión para cuantificar el transporte de las sales y del solvente a través de la membrana, se plantean las ecuaciones de balance de materia y energía en la unidad de ósmosis inversa de una planta desalinizadora de agua de mar, obteniéndose un modelo matemático no lineal multivariable. Al validar el modelo con datos experimentales se verifica un buen grado de ajuste. Más adelante, se linealiza el modelo obtenido (alrededor de sus condiciones normales de operación) para conseguir una representación en el espacio de estados, que es utilizada en el diseño de un neurocontrolador dinámico. Se valida el desempeño del controlador diseñado frente a cambios en la referencia, presencia de ruido y rechazo a perturbaciones, encontrándose en todos los casos un desempeño satisfactorio. Posteriormente se realiza un estudio comparativo del desempeño del controlador neuronal diseñado frente a controladores PID, verificándose con bastante claridad la superioridad del controlador neuronal, especialmente en las situaciones en las que cambian significativamente las dos variables controladas a la vez. Se concluye la memoria de tesis haciendo una propuesta de implementación práctica del sistema de control diseñado, que sugiere el uso de una aplicación cliente/servidor OPC con el controlador neuronal implementado en Simulink (en una PC) y la comunicación con la planta a través de un PLC. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/292 |
url |
https://hdl.handle.net/20.500.12390/292 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/be2a1b11-5512-fbb4-e05f-5778e1001ef8/download https://repositorio.concytec.gob.pe/bitstreams/82682434-17c1-35b2-f07c-806ab4560dc4/download https://repositorio.concytec.gob.pe/bitstreams/56dfcb00-c4b2-3d9e-d6dc-dcfe6940e3ac/download https://repositorio.concytec.gob.pe/bitstreams/037194e0-88a1-40d6-8128-2107b40c145f/download |
bitstream.checksum.fl_str_mv |
dcad2deb0eb944750c3ba386c29f5f95 8a4605be74aa9ea9d79846c1fba20a33 1d65c2a9f4ab927262690f323bac6b53 cd4b6c411dbbf1efffcb1fd0cf84b68c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844162177122959360 |
spelling |
Publicationrp00255600Carrasco Banda, Neil Neizer2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/292En este trabajo de tesis se parte de la hipótesis de que: es posible aumentar la eficiencia de las plantas desalinizadoras de agua de mar utilizando sistemas de control inteligente, conformados por controladores multivariables fundamentados en redes neuronales artificiales y modelos matemáticos multivariables basados en las leyes de conservación de la materia y energía. Se empieza describiendo las tecnologías empleadas a nivel industrial para la desalinización de agua, y se continúa con una revisión del estado del arte del modelado y control de las plantas desalinizadoras que se basan en ósmosis inversa. Luego, teniendo en cuenta la polarización de la concentración y utilizando el modelo de solución-difusión para cuantificar el transporte de las sales y del solvente a través de la membrana, se plantean las ecuaciones de balance de materia y energía en la unidad de ósmosis inversa de una planta desalinizadora de agua de mar, obteniéndose un modelo matemático no lineal multivariable. Al validar el modelo con datos experimentales se verifica un buen grado de ajuste. Más adelante, se linealiza el modelo obtenido (alrededor de sus condiciones normales de operación) para conseguir una representación en el espacio de estados, que es utilizada en el diseño de un neurocontrolador dinámico. Se valida el desempeño del controlador diseñado frente a cambios en la referencia, presencia de ruido y rechazo a perturbaciones, encontrándose en todos los casos un desempeño satisfactorio. Posteriormente se realiza un estudio comparativo del desempeño del controlador neuronal diseñado frente a controladores PID, verificándose con bastante claridad la superioridad del controlador neuronal, especialmente en las situaciones en las que cambian significativamente las dos variables controladas a la vez. Se concluye la memoria de tesis haciendo una propuesta de implementación práctica del sistema de control diseñado, que sugiere el uso de una aplicación cliente/servidor OPC con el controlador neuronal implementado en Simulink (en una PC) y la comunicación con la planta a través de un PLC.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytspaPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/DesalinizaciónAgua de mar-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversainfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en Ingeniería de Control y AutomatizaciónIngeniería Eléctrica, Electrónica e informáticaPontificia Universidad Católica del Perú. Escuela de PostgradoTHUMBNAIL2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdf.jpg2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdf.jpgIM Thumbnailimage/jpeg7970https://repositorio.concytec.gob.pe/bitstreams/be2a1b11-5512-fbb4-e05f-5778e1001ef8/downloaddcad2deb0eb944750c3ba386c29f5f95MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.concytec.gob.pe/bitstreams/82682434-17c1-35b2-f07c-806ab4560dc4/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdf2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdfapplication/pdf3103699https://repositorio.concytec.gob.pe/bitstreams/56dfcb00-c4b2-3d9e-d6dc-dcfe6940e3ac/download1d65c2a9f4ab927262690f323bac6b53MD53TEXT2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdf.txt2016_Carrasco_Modelado-y-control-basado-en-redes-neuronales-artificiales.pdf.txtExtracted texttext/plain256907https://repositorio.concytec.gob.pe/bitstreams/037194e0-88a1-40d6-8128-2107b40c145f/downloadcd4b6c411dbbf1efffcb1fd0cf84b68cMD5520.500.12390/292oai:repositorio.concytec.gob.pe:20.500.12390/2922024-06-10 15:17:14.38http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="49196642-5b02-4ece-a126-9d576daf46dd"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Modelado y control basado en redes neuronales artificiales de una planta piloto de desalinización de agua de mar por ósmosis inversa</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <Authors> <Author> <DisplayName>Carrasco Banda, Neil Neizer</DisplayName> <Person id="rp00255" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Desalinización</Keyword> <Keyword>Agua de mar</Keyword> <Abstract>En este trabajo de tesis se parte de la hipótesis de que: es posible aumentar la eficiencia de las plantas desalinizadoras de agua de mar utilizando sistemas de control inteligente, conformados por controladores multivariables fundamentados en redes neuronales artificiales y modelos matemáticos multivariables basados en las leyes de conservación de la materia y energía. Se empieza describiendo las tecnologías empleadas a nivel industrial para la desalinización de agua, y se continúa con una revisión del estado del arte del modelado y control de las plantas desalinizadoras que se basan en ósmosis inversa. Luego, teniendo en cuenta la polarización de la concentración y utilizando el modelo de solución-difusión para cuantificar el transporte de las sales y del solvente a través de la membrana, se plantean las ecuaciones de balance de materia y energía en la unidad de ósmosis inversa de una planta desalinizadora de agua de mar, obteniéndose un modelo matemático no lineal multivariable. Al validar el modelo con datos experimentales se verifica un buen grado de ajuste. Más adelante, se linealiza el modelo obtenido (alrededor de sus condiciones normales de operación) para conseguir una representación en el espacio de estados, que es utilizada en el diseño de un neurocontrolador dinámico. Se valida el desempeño del controlador diseñado frente a cambios en la referencia, presencia de ruido y rechazo a perturbaciones, encontrándose en todos los casos un desempeño satisfactorio. Posteriormente se realiza un estudio comparativo del desempeño del controlador neuronal diseñado frente a controladores PID, verificándose con bastante claridad la superioridad del controlador neuronal, especialmente en las situaciones en las que cambian significativamente las dos variables controladas a la vez. Se concluye la memoria de tesis haciendo una propuesta de implementación práctica del sistema de control diseñado, que sugiere el uso de una aplicación cliente/servidor OPC con el controlador neuronal implementado en Simulink (en una PC) y la comunicación con la planta a través de un PLC.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.023852 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).