Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control

Descripción del Articulo

The aim of this master thesis is to design a control system based on model predictive control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of obtained data is larger due to multiple sensors, the required sampling time has to be larger enough in comparison with the calculati...

Descripción completa

Detalles Bibliográficos
Autor: Barreto Guerra, Jean Paul
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1774
Enlace del recurso:https://hdl.handle.net/20.500.12390/1774
Nivel de acceso:acceso abierto
Materia:Sensores remotos
Control automático
Control predictivo
Robots móviles
https://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_60b1090eda60fbdc3bff7f83956b51cb
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1774
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
title Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
spellingShingle Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
Barreto Guerra, Jean Paul
Sensores remotos
Control automático
Control predictivo
Robots móviles
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
title_full Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
title_fullStr Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
title_full_unstemmed Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
title_sort Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control
author Barreto Guerra, Jean Paul
author_facet Barreto Guerra, Jean Paul
author_role author
dc.contributor.author.fl_str_mv Barreto Guerra, Jean Paul
dc.subject.none.fl_str_mv Sensores remotos
topic Sensores remotos
Control automático
Control predictivo
Robots móviles
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Control automático
Control predictivo
Robots móviles
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The aim of this master thesis is to design a control system based on model predictive control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of obtained data is larger due to multiple sensors, the required sampling time has to be larger enough in comparison with the calculation time of the optimal problem. Then it is proposed a simplification of the mobile robot model in order to reduce this optimization time. The sensor data fusion technique uses the range information of a laser scanner and the data of a mono-camera acquired from image processing techniques. In image processing different detection algorithms are proposed such as shape and color detection. Therefore an estimation of the obstacles dimension and distance is explained obtaining accurate results. Finally a data fusion for obstacle determination is developed in order to use this information in the optimization control problem as a path constraint. The obtained results show the mobile robot behavior in trajectories tracking and obstacle avoidance problems by comparing two different sampling times. It is concluded that the mobile robot reaches the final desired position while avoiding the detected obstacles along the trajectory.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1774
url https://hdl.handle.net/20.500.12390/1774
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175649349074944
spelling Publicationrp04726600Barreto Guerra, Jean Paul2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1774The aim of this master thesis is to design a control system based on model predictive control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of obtained data is larger due to multiple sensors, the required sampling time has to be larger enough in comparison with the calculation time of the optimal problem. Then it is proposed a simplification of the mobile robot model in order to reduce this optimization time. The sensor data fusion technique uses the range information of a laser scanner and the data of a mono-camera acquired from image processing techniques. In image processing different detection algorithms are proposed such as shape and color detection. Therefore an estimation of the obstacles dimension and distance is explained obtaining accurate results. Finally a data fusion for obstacle determination is developed in order to use this information in the optimization control problem as a path constraint. The obtained results show the mobile robot behavior in trajectories tracking and obstacle avoidance problems by comparing two different sampling times. It is concluded that the mobile robot reaches the final desired position while avoiding the detected obstacles along the trajectory.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Sensores remotosControl automático-1Control predictivo-1Robots móviles-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive controlinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en Ingeniería de Control y AutomatizaciónIngeniería de Control y AutomatizaciónPontificia Universidad Católica del Perú. Escuela de Postgrado20.500.12390/1774oai:repositorio.concytec.gob.pe:20.500.12390/17742024-05-30 15:40:08.853http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8f96c8c3-0860-47d2-8ffc-8d9e606c1b53"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>Barreto Guerra, Jean Paul</DisplayName> <Person id="rp04726" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc-nd/2.5/pe/</License> <Keyword>Sensores remotos</Keyword> <Keyword>Control automático</Keyword> <Keyword>Control predictivo</Keyword> <Keyword>Robots móviles</Keyword> <Abstract>The aim of this master thesis is to design a control system based on model predictive control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of obtained data is larger due to multiple sensors, the required sampling time has to be larger enough in comparison with the calculation time of the optimal problem. Then it is proposed a simplification of the mobile robot model in order to reduce this optimization time. The sensor data fusion technique uses the range information of a laser scanner and the data of a mono-camera acquired from image processing techniques. In image processing different detection algorithms are proposed such as shape and color detection. Therefore an estimation of the obstacles dimension and distance is explained obtaining accurate results. Finally a data fusion for obstacle determination is developed in order to use this information in the optimization control problem as a path constraint. The obtained results show the mobile robot behavior in trajectories tracking and obstacle avoidance problems by comparing two different sampling times. It is concluded that the mobile robot reaches the final desired position while avoiding the detected obstacles along the trajectory.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.436549
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).