Remarks on p-cyclically monotone operators
Descripción del Articulo
In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1173 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1173 https://doi.org/10.1080/02331934.2019.1636049 |
Nivel de acceso: | acceso abierto |
Materia: | P-cyclically monotone operators Fitzpatrick functions of order p Linear p-cyclically monotone operators |
id |
CONC_59fdf4daa021b5c485d755b3fcfa6c9e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1173 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp03349600rp02278500Bueno, OCotrina, J2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1173https://doi.org/10.1080/02331934.2019.1636049474192400001In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengTaylor and Francis Ltd.Optimizationinfo:eu-repo/semantics/openAccessP-cyclically monotone operatorsFitzpatrick functions of order pLinear p-cyclically monotone operatorsRemarks on p-cyclically monotone operatorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1173oai:repositorio.concytec.gob.pe:20.500.12390/11732025-09-24 09:10:27.247http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1e9ad4d6-592c-462c-9f43-de6c6f4b89f2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Remarks on p-cyclically monotone operators</Title> <PublishedIn> <Publication> <Title>Optimization</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1080/02331934.2019.1636049</DOI> <ISI-Number>474192400001</ISI-Number> <Authors> <Author> <DisplayName>Bueno, O</DisplayName> <Person id="rp03349" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cotrina, J</DisplayName> <Person id="rp02278" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Taylor and Francis Ltd.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>P-cyclically monotone operators</Keyword> <Keyword>Fitzpatrick functions of order p</Keyword> <Keyword>Linear p-cyclically monotone operators</Keyword> <Abstract>In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Remarks on p-cyclically monotone operators |
title |
Remarks on p-cyclically monotone operators |
spellingShingle |
Remarks on p-cyclically monotone operators Bueno, O P-cyclically monotone operators Fitzpatrick functions of order p Linear p-cyclically monotone operators |
title_short |
Remarks on p-cyclically monotone operators |
title_full |
Remarks on p-cyclically monotone operators |
title_fullStr |
Remarks on p-cyclically monotone operators |
title_full_unstemmed |
Remarks on p-cyclically monotone operators |
title_sort |
Remarks on p-cyclically monotone operators |
author |
Bueno, O |
author_facet |
Bueno, O Cotrina, J |
author_role |
author |
author2 |
Cotrina, J |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bueno, O Cotrina, J |
dc.subject.en.fl_str_mv |
P-cyclically monotone operators Fitzpatrick functions of order p Linear p-cyclically monotone operators |
topic |
P-cyclically monotone operators Fitzpatrick functions of order p Linear p-cyclically monotone operators |
description |
In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1173 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/02331934.2019.1636049 |
dc.identifier.isi.none.fl_str_mv |
474192400001 |
url |
https://hdl.handle.net/20.500.12390/1173 https://doi.org/10.1080/02331934.2019.1636049 |
identifier_str_mv |
474192400001 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Optimization |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.en.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883061290827776 |
score |
13.814859 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).