Remarks on p-cyclically monotone operators

Descripción del Articulo

In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with...

Descripción completa

Detalles Bibliográficos
Autores: Bueno, O, Cotrina, J
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1173
Enlace del recurso:https://hdl.handle.net/20.500.12390/1173
https://doi.org/10.1080/02331934.2019.1636049
Nivel de acceso:acceso abierto
Materia:P-cyclically monotone operators
Fitzpatrick functions of order p
Linear p-cyclically monotone operators
id CONC_59fdf4daa021b5c485d755b3fcfa6c9e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1173
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp03349600rp02278500Bueno, OCotrina, J2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1173https://doi.org/10.1080/02331934.2019.1636049474192400001In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengTaylor and Francis Ltd.Optimizationinfo:eu-repo/semantics/openAccessP-cyclically monotone operatorsFitzpatrick functions of order pLinear p-cyclically monotone operatorsRemarks on p-cyclically monotone operatorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1173oai:repositorio.concytec.gob.pe:20.500.12390/11732025-09-24 09:10:27.247http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1e9ad4d6-592c-462c-9f43-de6c6f4b89f2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Remarks on p-cyclically monotone operators</Title> <PublishedIn> <Publication> <Title>Optimization</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1080/02331934.2019.1636049</DOI> <ISI-Number>474192400001</ISI-Number> <Authors> <Author> <DisplayName>Bueno, O</DisplayName> <Person id="rp03349" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cotrina, J</DisplayName> <Person id="rp02278" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Taylor and Francis Ltd.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>P-cyclically monotone operators</Keyword> <Keyword>Fitzpatrick functions of order p</Keyword> <Keyword>Linear p-cyclically monotone operators</Keyword> <Abstract>In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Remarks on p-cyclically monotone operators
title Remarks on p-cyclically monotone operators
spellingShingle Remarks on p-cyclically monotone operators
Bueno, O
P-cyclically monotone operators
Fitzpatrick functions of order p
Linear p-cyclically monotone operators
title_short Remarks on p-cyclically monotone operators
title_full Remarks on p-cyclically monotone operators
title_fullStr Remarks on p-cyclically monotone operators
title_full_unstemmed Remarks on p-cyclically monotone operators
title_sort Remarks on p-cyclically monotone operators
author Bueno, O
author_facet Bueno, O
Cotrina, J
author_role author
author2 Cotrina, J
author2_role author
dc.contributor.author.fl_str_mv Bueno, O
Cotrina, J
dc.subject.en.fl_str_mv P-cyclically monotone operators
Fitzpatrick functions of order p
Linear p-cyclically monotone operators
topic P-cyclically monotone operators
Fitzpatrick functions of order p
Linear p-cyclically monotone operators
description In this paper, we deal with three aspects of p-cyclically monotone operators. First, we introduce a notion of monotone polar adapted for p-cyclically monotone operators and study these kinds of operators with a unique maximal extension (called pre-maximal), and with a convex graph. We then deal with linear operators and provide characterizations of p-cyclical monotonicity and maximal p-cyclical monotonicity. Finally, we show that the Brézis-Browder theorem preserves p-cyclical monotonicity in reflexive Banach spaces.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1173
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/02331934.2019.1636049
dc.identifier.isi.none.fl_str_mv 474192400001
url https://hdl.handle.net/20.500.12390/1173
https://doi.org/10.1080/02331934.2019.1636049
identifier_str_mv 474192400001
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Optimization
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.en.fl_str_mv Taylor and Francis Ltd.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883061290827776
score 13.814859
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).