Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks

Descripción del Articulo

We want to thank the Image Processing Research Laboratory. (INTI-Lab) and the Universidad de Ciencias y Humanidades. (UCH) for their support in this research, the National Fund for. Scientific, Technological and Technological Innovation (FONDECYT), according to the research: ?SAMAYCOV: ?Desarrollo d...

Descripción completa

Detalles Bibliográficos
Autores: Alicia A.M., Alexander A.-G., Sebastian R.-C., William C.F., Michael C.-T., Víctor H.-A.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2963
Enlace del recurso:https://hdl.handle.net/20.500.12390/2963
https://doi.org/10.14569/IJACSA.2021.0120645
Nivel de acceso:acceso abierto
Materia:pneumonia
Algorithm
classification
computational neural networks
lung sounds
mortality
https://purl.org/pe-repo/ocde/ford#3.02.28
id CONC_570dbdf1d453eb497dce2b22c7ffa776
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2963
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
title Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
spellingShingle Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
Alicia A.M.
pneumonia
Algorithm
Algorithm
classification
classification
computational neural networks
computational neural networks
lung sounds
mortality
mortality
https://purl.org/pe-repo/ocde/ford#3.02.28
title_short Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
title_full Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
title_fullStr Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
title_full_unstemmed Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
title_sort Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
author Alicia A.M.
author_facet Alicia A.M.
Alexander A.-G.
Sebastian R.-C.
William C.F.
Michael C.-T.
Víctor H.-A.
author_role author
author2 Alexander A.-G.
Sebastian R.-C.
William C.F.
Michael C.-T.
Víctor H.-A.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Alicia A.M.
Alexander A.-G.
Sebastian R.-C.
William C.F.
Michael C.-T.
Víctor H.-A.
dc.subject.none.fl_str_mv pneumonia
topic pneumonia
Algorithm
Algorithm
classification
classification
computational neural networks
computational neural networks
lung sounds
mortality
mortality
https://purl.org/pe-repo/ocde/ford#3.02.28
dc.subject.es_PE.fl_str_mv Algorithm
Algorithm
classification
classification
computational neural networks
computational neural networks
lung sounds
mortality
mortality
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.02.28
description We want to thank the Image Processing Research Laboratory. (INTI-Lab) and the Universidad de Ciencias y Humanidades. (UCH) for their support in this research, the National Fund for. Scientific, Technological and Technological Innovation (FONDECYT), according to the research: ?SAMAYCOV: ?Desarrollo de un dispositivo electr?nico port?til a bajo costo para evaluar riesgo de neumon?a basado en sonido pulmonar anormal en pacientes con sospecha de COVID-19 en zonas vulnerables?. CONVENIO 054-2020-FONDECYT?; for the financing of this research and the Electronics Laboratory of the UCH for assigning us their facilities and being able to carry out the respective tests.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2963
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2021.0120645
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85109194641
url https://hdl.handle.net/20.500.12390/2963
https://doi.org/10.14569/IJACSA.2021.0120645
identifier_str_mv 2-s2.0-85109194641
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Science and Information Organization
publisher.none.fl_str_mv Science and Information Organization
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175713612103680
spelling Publicationrp08389600rp08392600rp08391600rp08393600rp08390600rp08394600Alicia A.M.Alexander A.-G.Sebastian R.-C.William C.F.Michael C.-T.Víctor H.-A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2963https://doi.org/10.14569/IJACSA.2021.01206452-s2.0-85109194641We want to thank the Image Processing Research Laboratory. (INTI-Lab) and the Universidad de Ciencias y Humanidades. (UCH) for their support in this research, the National Fund for. Scientific, Technological and Technological Innovation (FONDECYT), according to the research: ?SAMAYCOV: ?Desarrollo de un dispositivo electr?nico port?til a bajo costo para evaluar riesgo de neumon?a basado en sonido pulmonar anormal en pacientes con sospecha de COVID-19 en zonas vulnerables?. CONVENIO 054-2020-FONDECYT?; for the financing of this research and the Electronics Laboratory of the UCH for assigning us their facilities and being able to carry out the respective tests.In the world and in Peru, Acute Respiratory Infections are the main cause of death, especially in the most vulnerable population, children under 5 years of age and older adults. Pneumonia is the leading cause of death of children in the world. 60.2% of pneumonia cases affect children under 5 years of age. Thus, prevention and timely treatment of lung diseases are crucial to reduce infant mortality in Peru. Among the main problems associated with this high is percentage the lack of medical professionals and resources, especially in remote areas, such as Puno, Huancavelica and Arequipa, which experience temperatures as low as -20°C during the cold season. This study develops an algorithm based on computational neural networks to differentiate between normal and abnormal lung sounds. The initial base of 917 sounds was used, through a process of data augmentation, this base was increased to 8253 sounds in total, and this process was carried out due to the need of a large number of data for the use of computational neural networks. From each signal, features were extracted using three methods: MFCC, Melspectogram and STFT. Three models were generated, the first one to classify normal and abnormal, which obtained a training Accuracy of 1 and a testing accuracy of 0.998. The second one classifies normal sound, pneumonia and other abnormalities and obtained training Accuracy values of 0.9959 and a testing accuracy of 0.9885. Finally, we classified by specific ailment where we obtained a training Accuracy of 0.9967 and a testing accuracy of 0.9909. This research provides interesting findings about the diagnosis and classification of lung sounds automatically using convolutional neural networks, which is the beginning for the development of a platform to assess the risk of pneumonia in the first moment, thus allowing rapid care and referral that seeks to reduce mortality associated mainly with pneumonia. © 2021Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengScience and Information OrganizationInternational Journal of Advanced Computer Science and Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/pneumoniaAlgorithm-1Algorithm-1classification-1classification-1computational neural networks-1computational neural networks-1lung sounds-1mortality-1mortality-1https://purl.org/pe-repo/ocde/ford#3.02.28-1Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2963oai:repositorio.concytec.gob.pe:20.500.12390/29632024-05-30 16:12:33.582https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b7811d41-f334-4f3b-9c8a-786b57acc089"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks</Title> <PublishedIn> <Publication> <Title>International Journal of Advanced Computer Science and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.14569/IJACSA.2021.0120645</DOI> <SCP-Number>2-s2.0-85109194641</SCP-Number> <Authors> <Author> <DisplayName>Alicia A.M.</DisplayName> <Person id="rp08389" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alexander A.-G.</DisplayName> <Person id="rp08392" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sebastian R.-C.</DisplayName> <Person id="rp08391" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>William C.F.</DisplayName> <Person id="rp08393" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Michael C.-T.</DisplayName> <Person id="rp08390" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Víctor H.-A.</DisplayName> <Person id="rp08394" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Science and Information Organization</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>pneumonia</Keyword> <Keyword>Algorithm</Keyword> <Keyword>Algorithm</Keyword> <Keyword>classification</Keyword> <Keyword>classification</Keyword> <Keyword>computational neural networks</Keyword> <Keyword>computational neural networks</Keyword> <Keyword>lung sounds</Keyword> <Keyword>mortality</Keyword> <Keyword>mortality</Keyword> <Abstract>In the world and in Peru, Acute Respiratory Infections are the main cause of death, especially in the most vulnerable population, children under 5 years of age and older adults. Pneumonia is the leading cause of death of children in the world. 60.2% of pneumonia cases affect children under 5 years of age. Thus, prevention and timely treatment of lung diseases are crucial to reduce infant mortality in Peru. Among the main problems associated with this high is percentage the lack of medical professionals and resources, especially in remote areas, such as Puno, Huancavelica and Arequipa, which experience temperatures as low as -20°C during the cold season. This study develops an algorithm based on computational neural networks to differentiate between normal and abnormal lung sounds. The initial base of 917 sounds was used, through a process of data augmentation, this base was increased to 8253 sounds in total, and this process was carried out due to the need of a large number of data for the use of computational neural networks. From each signal, features were extracted using three methods: MFCC, Melspectogram and STFT. Three models were generated, the first one to classify normal and abnormal, which obtained a training Accuracy of 1 and a testing accuracy of 0.998. The second one classifies normal sound, pneumonia and other abnormalities and obtained training Accuracy values of 0.9959 and a testing accuracy of 0.9885. Finally, we classified by specific ailment where we obtained a training Accuracy of 0.9967 and a testing accuracy of 0.9909. This research provides interesting findings about the diagnosis and classification of lung sounds automatically using convolutional neural networks, which is the beginning for the development of a platform to assess the risk of pneumonia in the first moment, thus allowing rapid care and referral that seeks to reduce mortality associated mainly with pneumonia. © 2021</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243791
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).