Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles

Descripción del Articulo

Magnetite (Fe3O4) nanoparticles coated with organic material are of considerable importance in various areas of engineering, as well as in biomedicine. Several papers show drastic changes in the magnetic properties related to the surface effects and the particle-particle interactions strength. Howev...

Descripción completa

Detalles Bibliográficos
Autores: Urian Y.A., Atoche-Medrano J.J., Quispe L.T., León Félix L., Coaquira J.A.H.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2338
Enlace del recurso:https://hdl.handle.net/20.500.12390/2338
https://doi.org/10.1016/j.jmmm.2020.167686
Nivel de acceso:acceso abierto
Materia:Thermal decomposition method
Core/shell structure
Magnetic anisotropy
Oleic acid-coated magnetite nanoparticles
Particle-particle interactions
Size dependence
http://purl.org/pe-repo/ocde/ford#1.03.03
id CONC_406201079fea284a9711f4a67ed28a87
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2338
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
title Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
spellingShingle Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
Urian Y.A.
Thermal decomposition method
Core/shell structure
Magnetic anisotropy
Oleic acid-coated magnetite nanoparticles
Particle-particle interactions
Size dependence
http://purl.org/pe-repo/ocde/ford#1.03.03
title_short Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
title_full Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
title_fullStr Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
title_full_unstemmed Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
title_sort Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles
author Urian Y.A.
author_facet Urian Y.A.
Atoche-Medrano J.J.
Quispe L.T.
León Félix L.
Coaquira J.A.H.
author_role author
author2 Atoche-Medrano J.J.
Quispe L.T.
León Félix L.
Coaquira J.A.H.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Urian Y.A.
Atoche-Medrano J.J.
Quispe L.T.
León Félix L.
Coaquira J.A.H.
dc.subject.none.fl_str_mv Thermal decomposition method
topic Thermal decomposition method
Core/shell structure
Magnetic anisotropy
Oleic acid-coated magnetite nanoparticles
Particle-particle interactions
Size dependence
http://purl.org/pe-repo/ocde/ford#1.03.03
dc.subject.es_PE.fl_str_mv Core/shell structure
Magnetic anisotropy
Oleic acid-coated magnetite nanoparticles
Particle-particle interactions
Size dependence
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.03.03
description Magnetite (Fe3O4) nanoparticles coated with organic material are of considerable importance in various areas of engineering, as well as in biomedicine. Several papers show drastic changes in the magnetic properties related to the surface effects and the particle-particle interactions strength. However, there is no consensus about the origin or mechanisms that produce these changes, which could be different depending on the particle size and shape, coating efficiency and particle-particle interaction strength. Aiming to shed light on these issues, oleic acid (OA) coated Fe3O4 nanoparticles with different sizes were synthesized by a thermal decomposition method. Structural and microscopic results revealed Fe3O4 nanoparticles with good crystallinity and almost-spherical or polyhedral shapes depending on the solvent used for the synthesis. Infrared (FTIR) spectroscopy indicated OA molecules attached to the surface of Fe3O4 NPs via bidentate (chelating and/or bridging) bonds; meanwhile, thermogravimetric analysis confirmed the presence of weakly and strongly bonded OA molecules, suggesting a successful coating of Fe3O4 NPs. Magnetization (M) vs. magnetic field (H) curves are consistent with a core/shell structure formed by magnetite/defective magnetite (maghemite) phases, in consistency with FTIR spectroscopy. It was determined lower saturation magnetization values than that expected for bulk magnetite, which was assigned to the likely presence of a fraction of iron ions in low-spin (LS) states in the defective magnetite (maghemite) layer at the particles surface. The magnetic results evidence that depending on the amount of OA coating, it is possible to tune the particle-particle separation distance, avoid particles agglomeration and particle-particle interactions. The temperature dependence of magnetization reveals the presence of non-interacting and interacting NPs. Meanwhile, AC magnetic susceptibility measurements are consistent with those results and provide features related to superparamagnetic (SPM) behavior, assigned to the non-interacting NPs, and interacting SPM behavior, assigned to the interacting NPs, whose interaction strength is not enough to lead to a spin-glass like behavior. © 2021 Elsevier B.V.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2338
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jmmm.2020.167686
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85099174114
url https://hdl.handle.net/20.500.12390/2338
https://doi.org/10.1016/j.jmmm.2020.167686
identifier_str_mv 2-s2.0-85099174114
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Magnetism and Magnetic Materials
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882996714274816
spelling Publicationrp05598600rp05599600rp05597600rp05600600rp05529600Urian Y.A.Atoche-Medrano J.J.Quispe L.T.León Félix L.Coaquira J.A.H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2338https://doi.org/10.1016/j.jmmm.2020.1676862-s2.0-85099174114Magnetite (Fe3O4) nanoparticles coated with organic material are of considerable importance in various areas of engineering, as well as in biomedicine. Several papers show drastic changes in the magnetic properties related to the surface effects and the particle-particle interactions strength. However, there is no consensus about the origin or mechanisms that produce these changes, which could be different depending on the particle size and shape, coating efficiency and particle-particle interaction strength. Aiming to shed light on these issues, oleic acid (OA) coated Fe3O4 nanoparticles with different sizes were synthesized by a thermal decomposition method. Structural and microscopic results revealed Fe3O4 nanoparticles with good crystallinity and almost-spherical or polyhedral shapes depending on the solvent used for the synthesis. Infrared (FTIR) spectroscopy indicated OA molecules attached to the surface of Fe3O4 NPs via bidentate (chelating and/or bridging) bonds; meanwhile, thermogravimetric analysis confirmed the presence of weakly and strongly bonded OA molecules, suggesting a successful coating of Fe3O4 NPs. Magnetization (M) vs. magnetic field (H) curves are consistent with a core/shell structure formed by magnetite/defective magnetite (maghemite) phases, in consistency with FTIR spectroscopy. It was determined lower saturation magnetization values than that expected for bulk magnetite, which was assigned to the likely presence of a fraction of iron ions in low-spin (LS) states in the defective magnetite (maghemite) layer at the particles surface. The magnetic results evidence that depending on the amount of OA coating, it is possible to tune the particle-particle separation distance, avoid particles agglomeration and particle-particle interactions. The temperature dependence of magnetization reveals the presence of non-interacting and interacting NPs. Meanwhile, AC magnetic susceptibility measurements are consistent with those results and provide features related to superparamagnetic (SPM) behavior, assigned to the non-interacting NPs, and interacting SPM behavior, assigned to the interacting NPs, whose interaction strength is not enough to lead to a spin-glass like behavior. © 2021 Elsevier B.V.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.Journal of Magnetism and Magnetic Materialsinfo:eu-repo/semantics/openAccessThermal decomposition methodCore/shell structure-1Magnetic anisotropy-1Oleic acid-coated magnetite nanoparticles-1Particle-particle interactions-1Size dependence-1http://purl.org/pe-repo/ocde/ford#1.03.03-1Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticlesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2338oai:repositorio.concytec.gob.pe:20.500.12390/23382024-05-30 16:07:17.147http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8ae395bd-15ac-4f7a-88f4-44b89662adae"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles</Title> <PublishedIn> <Publication> <Title>Journal of Magnetism and Magnetic Materials</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.jmmm.2020.167686</DOI> <SCP-Number>2-s2.0-85099174114</SCP-Number> <Authors> <Author> <DisplayName>Urian Y.A.</DisplayName> <Person id="rp05598" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Atoche-Medrano J.J.</DisplayName> <Person id="rp05599" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Quispe L.T.</DisplayName> <Person id="rp05597" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>León Félix L.</DisplayName> <Person id="rp05600" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coaquira J.A.H.</DisplayName> <Person id="rp05529" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Thermal decomposition method</Keyword> <Keyword>Core/shell structure</Keyword> <Keyword>Magnetic anisotropy</Keyword> <Keyword>Oleic acid-coated magnetite nanoparticles</Keyword> <Keyword>Particle-particle interactions</Keyword> <Keyword>Size dependence</Keyword> <Abstract>Magnetite (Fe3O4) nanoparticles coated with organic material are of considerable importance in various areas of engineering, as well as in biomedicine. Several papers show drastic changes in the magnetic properties related to the surface effects and the particle-particle interactions strength. However, there is no consensus about the origin or mechanisms that produce these changes, which could be different depending on the particle size and shape, coating efficiency and particle-particle interaction strength. Aiming to shed light on these issues, oleic acid (OA) coated Fe3O4 nanoparticles with different sizes were synthesized by a thermal decomposition method. Structural and microscopic results revealed Fe3O4 nanoparticles with good crystallinity and almost-spherical or polyhedral shapes depending on the solvent used for the synthesis. Infrared (FTIR) spectroscopy indicated OA molecules attached to the surface of Fe3O4 NPs via bidentate (chelating and/or bridging) bonds; meanwhile, thermogravimetric analysis confirmed the presence of weakly and strongly bonded OA molecules, suggesting a successful coating of Fe3O4 NPs. Magnetization (M) vs. magnetic field (H) curves are consistent with a core/shell structure formed by magnetite/defective magnetite (maghemite) phases, in consistency with FTIR spectroscopy. It was determined lower saturation magnetization values than that expected for bulk magnetite, which was assigned to the likely presence of a fraction of iron ions in low-spin (LS) states in the defective magnetite (maghemite) layer at the particles surface. The magnetic results evidence that depending on the amount of OA coating, it is possible to tune the particle-particle separation distance, avoid particles agglomeration and particle-particle interactions. The temperature dependence of magnetization reveals the presence of non-interacting and interacting NPs. Meanwhile, AC magnetic susceptibility measurements are consistent with those results and provide features related to superparamagnetic (SPM) behavior, assigned to the non-interacting NPs, and interacting SPM behavior, assigned to the interacting NPs, whose interaction strength is not enough to lead to a spin-glass like behavior. © 2021 Elsevier B.V.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.36089
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).