Variances with Bonferroni means and ordered weighted averages

Descripción del Articulo

The variance is a statistical measure frequently used for analysis of dispersion in the data. This paper presents new types of variances that use Bonferroni means and ordered weighted averages in the aggregation process of the variance. The main advantage of this approach is that we can underestimat...

Descripción completa

Detalles Bibliográficos
Autores: Blanco-Mesa F., León-Castro E., Merigó J.M., Herrera-Viedma E.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2688
Enlace del recurso:https://hdl.handle.net/20.500.12390/2688
https://doi.org/10.1002/int.22184
Nivel de acceso:acceso abierto
Materia:variance
asymmetric information
Bonferroni means
OWA operator
strategy decision-making
http://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:The variance is a statistical measure frequently used for analysis of dispersion in the data. This paper presents new types of variances that use Bonferroni means and ordered weighted averages in the aggregation process of the variance. The main advantage of this approach is that we can underestimate or overestimate the variance according to the attitudinal character of the decision-maker. The work considers several particular cases including the minimum and the maximum variance and presents some numerical examples. The article also develops some extensions and generalizations by using induced aggregation operators and generalized and quasi-arithmetic means. These approaches provide a more general framework that can consider a lot of other particular cases and a complex attitudinal character that could be affected by a wide range of variables. The study ends with an application of the new approach in a business decision-making problem regarding strategic analysis in enterprise risk management. © 2019 Wiley Periodicals, Inc.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).