Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300
Descripción del Articulo
En la actualidad, es común presenciar el desarrollo de aplicaciones de ingeniería orientadas a la mejora de calidad de vida de personas, tanto para las que han sufrido accidentes, como para las que poseen deficiencias congénitas. En el caso de las personas cuyas discapacidades son neurológicas, las...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1421 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1421 |
Nivel de acceso: | acceso abierto |
Materia: | Procesamiento de señales Interfaces Manipuladores |
id |
CONC_2fb2dc111400eb4c637ec5239083128d |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1421 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
title |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
spellingShingle |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 Chau Delgado, Juan Manuel Procesamiento de señales Interfaces Manipuladores |
title_short |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
title_full |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
title_fullStr |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
title_full_unstemmed |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
title_sort |
Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300 |
author |
Chau Delgado, Juan Manuel |
author_facet |
Chau Delgado, Juan Manuel |
author_role |
author |
dc.contributor.author.fl_str_mv |
Chau Delgado, Juan Manuel |
dc.subject.none.fl_str_mv |
Procesamiento de señales |
topic |
Procesamiento de señales Interfaces Manipuladores |
dc.subject.es_PE.fl_str_mv |
Interfaces Manipuladores |
description |
En la actualidad, es común presenciar el desarrollo de aplicaciones de ingeniería orientadas a la mejora de calidad de vida de personas, tanto para las que han sufrido accidentes, como para las que poseen deficiencias congénitas. En el caso de las personas cuyas discapacidades son neurológicas, las aplicaciones de rehabilitación, reincorporación, según se busque devolver facultades, o proveer medios de reemplazo para habilidades perdidas, requieren de una interfaz cerebro-computador, que se encarga de medir ciertos patrones en las señales cerebrales de los pacientes y traducirlos para que una computadora pueda interpretarlas. El presente trabajo comprende el diseño de una interfaz cerebro-computador que, aplicando algoritmos de procesamiento de señales cerebrales y aprendizaje de máquina, permite a un usuario seleccionar diversas tareas predefinidas para un manipulador robótico asistencial aprovechando el potencial relacionado a eventos conocido como P300. Adicionalmente, también se presenta una propuesta experimental para las realizaciones de pruebas, tanto fuera de línea como en línea del sistema, de manera que se pueda analizar y validar su eficiencia y usabilidad. Finalmente, se analizan resultados no cuantitativos provenientes de los usuarios, que pueden ser utilizados para futuros estudios relacionados. Dentro de los resultados de eficiencia del sistema se obtienen valores promedio alrededor de 90% para los experimentos de entrenamiento, y cercanos a 85% para la validación si se considera una secuencia de tres estímulos antes de que el sistema emita una predicción durante las pruebas en línea; sin embargo, los usuarios reportan que se podría mejorar la calidad del sistema si se realizan algunas mejoras, como la calidad de las imágenes mostradas como estímulos, y el contraste con el color de fondo. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1421 |
url |
https://hdl.handle.net/20.500.12390/1421 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883089652711424 |
spelling |
Publicationrp04174600Chau Delgado, Juan Manuel2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1421En la actualidad, es común presenciar el desarrollo de aplicaciones de ingeniería orientadas a la mejora de calidad de vida de personas, tanto para las que han sufrido accidentes, como para las que poseen deficiencias congénitas. En el caso de las personas cuyas discapacidades son neurológicas, las aplicaciones de rehabilitación, reincorporación, según se busque devolver facultades, o proveer medios de reemplazo para habilidades perdidas, requieren de una interfaz cerebro-computador, que se encarga de medir ciertos patrones en las señales cerebrales de los pacientes y traducirlos para que una computadora pueda interpretarlas. El presente trabajo comprende el diseño de una interfaz cerebro-computador que, aplicando algoritmos de procesamiento de señales cerebrales y aprendizaje de máquina, permite a un usuario seleccionar diversas tareas predefinidas para un manipulador robótico asistencial aprovechando el potencial relacionado a eventos conocido como P300. Adicionalmente, también se presenta una propuesta experimental para las realizaciones de pruebas, tanto fuera de línea como en línea del sistema, de manera que se pueda analizar y validar su eficiencia y usabilidad. Finalmente, se analizan resultados no cuantitativos provenientes de los usuarios, que pueden ser utilizados para futuros estudios relacionados. Dentro de los resultados de eficiencia del sistema se obtienen valores promedio alrededor de 90% para los experimentos de entrenamiento, y cercanos a 85% para la validación si se considera una secuencia de tres estímulos antes de que el sistema emita una predicción durante las pruebas en línea; sin embargo, los usuarios reportan que se podría mejorar la calidad del sistema si se realizan algunas mejoras, como la calidad de las imágenes mostradas como estímulos, y el contraste con el color de fondo.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Procesamiento de señalesInterfaces-1Manipuladores-1Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300info:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1421oai:repositorio.concytec.gob.pe:20.500.12390/14212025-09-23 15:36:02.116https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="490e67ac-fac3-468e-84e9-1588a4d225c0"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Selección de tareas predefinidas para un robot asistencial para personas discapacitadas a través de una interfaz cerebro-computador utilizando P300</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <Authors> <Author> <DisplayName>Chau Delgado, Juan Manuel</DisplayName> <Person id="rp04174" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Procesamiento de señales</Keyword> <Keyword>Interfaces</Keyword> <Keyword>Manipuladores</Keyword> <Abstract>En la actualidad, es común presenciar el desarrollo de aplicaciones de ingeniería orientadas a la mejora de calidad de vida de personas, tanto para las que han sufrido accidentes, como para las que poseen deficiencias congénitas. En el caso de las personas cuyas discapacidades son neurológicas, las aplicaciones de rehabilitación, reincorporación, según se busque devolver facultades, o proveer medios de reemplazo para habilidades perdidas, requieren de una interfaz cerebro-computador, que se encarga de medir ciertos patrones en las señales cerebrales de los pacientes y traducirlos para que una computadora pueda interpretarlas. El presente trabajo comprende el diseño de una interfaz cerebro-computador que, aplicando algoritmos de procesamiento de señales cerebrales y aprendizaje de máquina, permite a un usuario seleccionar diversas tareas predefinidas para un manipulador robótico asistencial aprovechando el potencial relacionado a eventos conocido como P300. Adicionalmente, también se presenta una propuesta experimental para las realizaciones de pruebas, tanto fuera de línea como en línea del sistema, de manera que se pueda analizar y validar su eficiencia y usabilidad. Finalmente, se analizan resultados no cuantitativos provenientes de los usuarios, que pueden ser utilizados para futuros estudios relacionados. Dentro de los resultados de eficiencia del sistema se obtienen valores promedio alrededor de 90% para los experimentos de entrenamiento, y cercanos a 85% para la validación si se considera una secuencia de tres estímulos antes de que el sistema emita una predicción durante las pruebas en línea; sin embargo, los usuarios reportan que se podría mejorar la calidad del sistema si se realizan algunas mejoras, como la calidad de las imágenes mostradas como estímulos, y el contraste con el color de fondo.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.885033 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).