A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
Descripción del Articulo
The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2012 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/680 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/680 https://doi.org/10.1007/s10589-011-9407-1 |
Nivel de acceso: | acceso abierto |
Materia: | Set theory Closed convex setss Convex feasibility problem Generalized Nash equilibrium Numerical algorithms Numerical experiments Projection method Game theory Algorithms https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
CONC_20c3828f32cad54d165da3559bcf3e5c |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/680 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
title |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
spellingShingle |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem Matioli L.C. Set theory Closed convex setss Convex feasibility problem Generalized Nash equilibrium Numerical algorithms Numerical experiments Projection method Game theory Algorithms https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
title_full |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
title_fullStr |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
title_full_unstemmed |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
title_sort |
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem |
author |
Matioli L.C. |
author_facet |
Matioli L.C. Sosa W. Yuan J. |
author_role |
author |
author2 |
Sosa W. Yuan J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Matioli L.C. Sosa W. Yuan J. |
dc.subject.none.fl_str_mv |
Set theory |
topic |
Set theory Closed convex setss Convex feasibility problem Generalized Nash equilibrium Numerical algorithms Numerical experiments Projection method Game theory Algorithms https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.es_PE.fl_str_mv |
Closed convex setss Convex feasibility problem Generalized Nash equilibrium Numerical algorithms Numerical experiments Projection method Game theory Algorithms |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain. |
publishDate |
2012 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/680 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s10589-011-9407-1 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84861997916 |
url |
https://hdl.handle.net/20.500.12390/680 https://doi.org/10.1007/s10589-011-9407-1 |
identifier_str_mv |
2-s2.0-84861997916 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Computational Optimization and Applications |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883115214897152 |
spelling |
Publicationrp01543600rp01544600rp01545600Matioli L.C.Sosa W.Yuan J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2012https://hdl.handle.net/20.500.12390/680https://doi.org/10.1007/s10589-011-9407-12-s2.0-84861997916The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301–316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer NatureComputational Optimization and Applicationsinfo:eu-repo/semantics/openAccessSet theoryClosed convex setss-1Convex feasibility problem-1Generalized Nash equilibrium-1Numerical algorithms-1Numerical experiments-1Projection method-1Game theory-1Algorithms-1https://purl.org/pe-repo/ocde/ford#1.01.00-1A numerical algorithm for finding solutions of a generalized Nash equilibrium probleminfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/680oai:repositorio.concytec.gob.pe:20.500.12390/6802024-05-30 15:44:10.032http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="67566030-32b2-4abf-a2d1-924bc3b1bf44"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A numerical algorithm for finding solutions of a generalized Nash equilibrium problem</Title> <PublishedIn> <Publication> <Title>Computational Optimization and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2012</PublicationDate> <DOI>https://doi.org/10.1007/s10589-011-9407-1</DOI> <SCP-Number>2-s2.0-84861997916</SCP-Number> <Authors> <Author> <DisplayName>Matioli L.C.</DisplayName> <Person id="rp01543" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sosa W.</DisplayName> <Person id="rp01544" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yuan J.</DisplayName> <Person id="rp01545" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Nature</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Set theory</Keyword> <Keyword>Closed convex setss</Keyword> <Keyword>Convex feasibility problem</Keyword> <Keyword>Generalized Nash equilibrium</Keyword> <Keyword>Numerical algorithms</Keyword> <Keyword>Numerical experiments</Keyword> <Keyword>Projection method</Keyword> <Keyword>Game theory</Keyword> <Keyword>Algorithms</Keyword> <Abstract>A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301–316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.291565 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).