A numerical algorithm for finding solutions of a generalized Nash equilibrium problem

Descripción del Articulo

The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.
Detalles Bibliográficos
Autores: Matioli L.C., Sosa W., Yuan J.
Formato: objeto de conferencia
Fecha de Publicación:2012
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/680
Enlace del recurso:https://hdl.handle.net/20.500.12390/680
https://doi.org/10.1007/s10589-011-9407-1
Nivel de acceso:acceso abierto
Materia:Set theory
Closed convex setss
Convex feasibility problem
Generalized Nash equilibrium
Numerical algorithms
Numerical experiments
Projection method
Game theory
Algorithms
https://purl.org/pe-repo/ocde/ford#1.01.00
id CONC_20c3828f32cad54d165da3559bcf3e5c
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/680
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
title A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
spellingShingle A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
Matioli L.C.
Set theory
Closed convex setss
Convex feasibility problem
Generalized Nash equilibrium
Numerical algorithms
Numerical experiments
Projection method
Game theory
Algorithms
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
title_full A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
title_fullStr A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
title_full_unstemmed A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
title_sort A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
author Matioli L.C.
author_facet Matioli L.C.
Sosa W.
Yuan J.
author_role author
author2 Sosa W.
Yuan J.
author2_role author
author
dc.contributor.author.fl_str_mv Matioli L.C.
Sosa W.
Yuan J.
dc.subject.none.fl_str_mv Set theory
topic Set theory
Closed convex setss
Convex feasibility problem
Generalized Nash equilibrium
Numerical algorithms
Numerical experiments
Projection method
Game theory
Algorithms
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.es_PE.fl_str_mv Closed convex setss
Convex feasibility problem
Generalized Nash equilibrium
Numerical algorithms
Numerical experiments
Projection method
Game theory
Algorithms
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.
publishDate 2012
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/680
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10589-011-9407-1
dc.identifier.scopus.none.fl_str_mv 2-s2.0-84861997916
url https://hdl.handle.net/20.500.12390/680
https://doi.org/10.1007/s10589-011-9407-1
identifier_str_mv 2-s2.0-84861997916
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Computational Optimization and Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883115214897152
spelling Publicationrp01543600rp01544600rp01545600Matioli L.C.Sosa W.Yuan J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2012https://hdl.handle.net/20.500.12390/680https://doi.org/10.1007/s10589-011-9407-12-s2.0-84861997916The work was partially supported by the CNPq, CAPES, and Foundação Araucária, Brazil, CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301–316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer NatureComputational Optimization and Applicationsinfo:eu-repo/semantics/openAccessSet theoryClosed convex setss-1Convex feasibility problem-1Generalized Nash equilibrium-1Numerical algorithms-1Numerical experiments-1Projection method-1Game theory-1Algorithms-1https://purl.org/pe-repo/ocde/ford#1.01.00-1A numerical algorithm for finding solutions of a generalized Nash equilibrium probleminfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/680oai:repositorio.concytec.gob.pe:20.500.12390/6802024-05-30 15:44:10.032http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="67566030-32b2-4abf-a2d1-924bc3b1bf44"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A numerical algorithm for finding solutions of a generalized Nash equilibrium problem</Title> <PublishedIn> <Publication> <Title>Computational Optimization and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2012</PublicationDate> <DOI>https://doi.org/10.1007/s10589-011-9407-1</DOI> <SCP-Number>2-s2.0-84861997916</SCP-Number> <Authors> <Author> <DisplayName>Matioli L.C.</DisplayName> <Person id="rp01543" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sosa W.</DisplayName> <Person id="rp01544" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yuan J.</DisplayName> <Person id="rp01545" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Nature</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Set theory</Keyword> <Keyword>Closed convex setss</Keyword> <Keyword>Convex feasibility problem</Keyword> <Keyword>Generalized Nash equilibrium</Keyword> <Keyword>Numerical algorithms</Keyword> <Keyword>Numerical experiments</Keyword> <Keyword>Projection method</Keyword> <Keyword>Game theory</Keyword> <Keyword>Algorithms</Keyword> <Abstract>A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301–316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.291565
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).