On the classification of elliptic foliations induced by real quadratic fields with center
Descripción del Articulo
Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2016 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2885 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2885 https://doi.org/10.1016/j.jde.2016.09.019 |
| Nivel de acceso: | acceso abierto |
| Materia: | Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| id |
CONC_17f591926c000aa1f38a23b8308a022a |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2885 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp08032600rp08031600Puchuri, LilianaBueno, Orestes2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2885https://doi.org/10.1016/j.jde.2016.09.019Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVJOURNAL OF DIFFERENTIAL EQUATIONSinfo:eu-repo/semantics/openAccessApplied MathematicsAnalysis-1http://purl.org/pe-repo/ocde/ford#1.01.01-1On the classification of elliptic foliations induced by real quadratic fields with centerinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2885oai:repositorio.concytec.gob.pe:20.500.12390/28852024-05-30 16:12:05.528http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="05862ad3-d5c7-4c14-96d2-95645b82b2b2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>On the classification of elliptic foliations induced by real quadratic fields with center</Title> <PublishedIn> <Publication> <Title>JOURNAL OF DIFFERENTIAL EQUATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.jde.2016.09.019</DOI> <Authors> <Author> <DisplayName>Puchuri, Liliana</DisplayName> <Person id="rp08032" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bueno, Orestes</DisplayName> <Person id="rp08031" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Applied Mathematics</Keyword> <Keyword>Analysis</Keyword> <Abstract>Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
On the classification of elliptic foliations induced by real quadratic fields with center |
| title |
On the classification of elliptic foliations induced by real quadratic fields with center |
| spellingShingle |
On the classification of elliptic foliations induced by real quadratic fields with center Puchuri, Liliana Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| title_short |
On the classification of elliptic foliations induced by real quadratic fields with center |
| title_full |
On the classification of elliptic foliations induced by real quadratic fields with center |
| title_fullStr |
On the classification of elliptic foliations induced by real quadratic fields with center |
| title_full_unstemmed |
On the classification of elliptic foliations induced by real quadratic fields with center |
| title_sort |
On the classification of elliptic foliations induced by real quadratic fields with center |
| author |
Puchuri, Liliana |
| author_facet |
Puchuri, Liliana Bueno, Orestes |
| author_role |
author |
| author2 |
Bueno, Orestes |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Puchuri, Liliana Bueno, Orestes |
| dc.subject.none.fl_str_mv |
Applied Mathematics |
| topic |
Applied Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.01 |
| dc.subject.es_PE.fl_str_mv |
Analysis |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
| description |
Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved. |
| publishDate |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2885 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jde.2016.09.019 |
| url |
https://hdl.handle.net/20.500.12390/2885 https://doi.org/10.1016/j.jde.2016.09.019 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
JOURNAL OF DIFFERENTIAL EQUATIONS |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Elsevier BV |
| publisher.none.fl_str_mv |
Elsevier BV |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883050620518400 |
| score |
13.918034 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).