On the classification of elliptic foliations induced by real quadratic fields with center

Descripción del Articulo

Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by...

Descripción completa

Detalles Bibliográficos
Autores: Puchuri, Liliana, Bueno, Orestes
Formato: artículo
Fecha de Publicación:2016
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2885
Enlace del recurso:https://hdl.handle.net/20.500.12390/2885
https://doi.org/10.1016/j.jde.2016.09.019
Nivel de acceso:acceso abierto
Materia:Applied Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_17f591926c000aa1f38a23b8308a022a
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2885
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp08032600rp08031600Puchuri, LilianaBueno, Orestes2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2885https://doi.org/10.1016/j.jde.2016.09.019Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVJOURNAL OF DIFFERENTIAL EQUATIONSinfo:eu-repo/semantics/openAccessApplied MathematicsAnalysis-1http://purl.org/pe-repo/ocde/ford#1.01.01-1On the classification of elliptic foliations induced by real quadratic fields with centerinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2885oai:repositorio.concytec.gob.pe:20.500.12390/28852024-05-30 16:12:05.528http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="05862ad3-d5c7-4c14-96d2-95645b82b2b2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>On the classification of elliptic foliations induced by real quadratic fields with center</Title> <PublishedIn> <Publication> <Title>JOURNAL OF DIFFERENTIAL EQUATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.jde.2016.09.019</DOI> <Authors> <Author> <DisplayName>Puchuri, Liliana</DisplayName> <Person id="rp08032" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bueno, Orestes</DisplayName> <Person id="rp08031" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Applied Mathematics</Keyword> <Keyword>Analysis</Keyword> <Abstract>Related to the study of Hilbert&apos;s infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau &amp; Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv On the classification of elliptic foliations induced by real quadratic fields with center
title On the classification of elliptic foliations induced by real quadratic fields with center
spellingShingle On the classification of elliptic foliations induced by real quadratic fields with center
Puchuri, Liliana
Applied Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short On the classification of elliptic foliations induced by real quadratic fields with center
title_full On the classification of elliptic foliations induced by real quadratic fields with center
title_fullStr On the classification of elliptic foliations induced by real quadratic fields with center
title_full_unstemmed On the classification of elliptic foliations induced by real quadratic fields with center
title_sort On the classification of elliptic foliations induced by real quadratic fields with center
author Puchuri, Liliana
author_facet Puchuri, Liliana
Bueno, Orestes
author_role author
author2 Bueno, Orestes
author2_role author
dc.contributor.author.fl_str_mv Puchuri, Liliana
Bueno, Orestes
dc.subject.none.fl_str_mv Applied Mathematics
topic Applied Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Analysis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2885
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jde.2016.09.019
url https://hdl.handle.net/20.500.12390/2885
https://doi.org/10.1016/j.jde.2016.09.019
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv JOURNAL OF DIFFERENTIAL EQUATIONS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier BV
publisher.none.fl_str_mv Elsevier BV
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883050620518400
score 13.918034
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).