Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming
Descripción del Articulo
I wish to thank Professor A. Shenitzer (York University, Canada) and Professor R. Jean (Universite du Quebec a Rimouski, Canada) for kindly reading this paper and making many valuable suggestions. This work has been supported by the Peruvian Council of Science and Technology (CONCYTEC).
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 1990 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/913 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/913 |
Nivel de acceso: | acceso abierto |
Materia: | Matemáticas Investigación https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
CONC_136fcd788ddc0dc4eafd4a5fa692d2f1 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/913 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp02407600Dubeau F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z1990https://hdl.handle.net/20.500.12390/9132-s2.0-84946304294I wish to thank Professor A. Shenitzer (York University, Canada) and Professor R. Jean (Universite du Quebec a Rimouski, Canada) for kindly reading this paper and making many valuable suggestions. This work has been supported by the Peruvian Council of Science and Technology (CONCYTEC).In a proof of the arithmetic-geometric mean (AGM) inequality is presented using the functional-equation approach of dynamic programming. The object of this note is to review this proof and to present a second proof using the same technique. On the way, we can appreciate the usefulness of the dynamic programming method and see two elementary proofs of a simple, but very important, inequality.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengTaylor & Francis OnlineInternational Journal of Mathematical Education in Science and Technologyinfo:eu-repo/semantics/openAccessMatemáticasInvestigación-1https://purl.org/pe-repo/ocde/ford#1.01.00-1Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programminginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/913oai:repositorio.concytec.gob.pe:20.500.12390/9132024-05-30 15:59:45.361http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="4484f08f-6dc0-4afa-8aa7-80c0cf2e18ea"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming</Title> <PublishedIn> <Publication> <Title>International Journal of Mathematical Education in Science and Technology</Title> </Publication> </PublishedIn> <PublicationDate>1990</PublicationDate> <SCP-Number>2-s2.0-84946304294</SCP-Number> <Authors> <Author> <DisplayName>Dubeau F.</DisplayName> <Person id="rp02407" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Taylor & Francis Online</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Matemáticas</Keyword> <Keyword>Investigación</Keyword> <Abstract>In a proof of the arithmetic-geometric mean (AGM) inequality is presented using the functional-equation approach of dynamic programming. The object of this note is to review this proof and to present a second proof using the same technique. On the way, we can appreciate the usefulness of the dynamic programming method and see two elementary proofs of a simple, but very important, inequality.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
title |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
spellingShingle |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming Dubeau F. Matemáticas Investigación https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
title_full |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
title_fullStr |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
title_full_unstemmed |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
title_sort |
Primal and dual proofs of the arithmetic–geometric mean inequality by dynamic programming |
author |
Dubeau F. |
author_facet |
Dubeau F. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dubeau F. |
dc.subject.none.fl_str_mv |
Matemáticas |
topic |
Matemáticas Investigación https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.es_PE.fl_str_mv |
Investigación |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
I wish to thank Professor A. Shenitzer (York University, Canada) and Professor R. Jean (Universite du Quebec a Rimouski, Canada) for kindly reading this paper and making many valuable suggestions. This work has been supported by the Peruvian Council of Science and Technology (CONCYTEC). |
publishDate |
1990 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
1990 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/913 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84946304294 |
url |
https://hdl.handle.net/20.500.12390/913 |
identifier_str_mv |
2-s2.0-84946304294 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
International Journal of Mathematical Education in Science and Technology |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis Online |
publisher.none.fl_str_mv |
Taylor & Francis Online |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883085037928448 |
score |
13.058567 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).