On the relevance of the metadata used in the semantic segmentation of indoor image spaces
Descripción del Articulo
This work has been partially funded by the Spanish Ministry of Sci-ence, Education and Universities, the European Regional DevelopmentFund and the State Research Agency [grant number RTI2018-098156-B-C52], and by FONDECYT / World Bank [grant number 026-2019FONDECYT-BM-INC.INV].
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3030 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/3030 https://doi.org/10.1016/j.eswa.2021.115486 |
Nivel de acceso: | acceso abierto |
Materia: | U-net Deep learning Fully convolutional network Indoor scenes Metadata preprocessing Semantic segmentation https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_0e93590debcf6098e337091fcca2247e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3030 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
spellingShingle |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces Vasquez-Espinoza L. U-net Deep learning Deep learning Fully convolutional network Fully convolutional network Indoor scenes Indoor scenes Metadata preprocessing Metadata preprocessing Semantic segmentation Semantic segmentation https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_full |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_fullStr |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_full_unstemmed |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_sort |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
author |
Vasquez-Espinoza L. |
author_facet |
Vasquez-Espinoza L. Castillo-Cara M. Orozco-Barbosa L. |
author_role |
author |
author2 |
Castillo-Cara M. Orozco-Barbosa L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vasquez-Espinoza L. Castillo-Cara M. Orozco-Barbosa L. |
dc.subject.none.fl_str_mv |
U-net |
topic |
U-net Deep learning Deep learning Fully convolutional network Fully convolutional network Indoor scenes Indoor scenes Metadata preprocessing Metadata preprocessing Semantic segmentation Semantic segmentation https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
Deep learning Deep learning Fully convolutional network Fully convolutional network Indoor scenes Indoor scenes Metadata preprocessing Metadata preprocessing Semantic segmentation Semantic segmentation |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
This work has been partially funded by the Spanish Ministry of Sci-ence, Education and Universities, the European Regional DevelopmentFund and the State Research Agency [grant number RTI2018-098156-B-C52], and by FONDECYT / World Bank [grant number 026-2019FONDECYT-BM-INC.INV]. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3030 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.eswa.2021.115486 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85109921392 |
url |
https://hdl.handle.net/20.500.12390/3030 https://doi.org/10.1016/j.eswa.2021.115486 |
identifier_str_mv |
2-s2.0-85109921392 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Expert Systems with Applications |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844331697810702336 |
spelling |
Publicationrp08674600rp01248600rp01251600Vasquez-Espinoza L.Castillo-Cara M.Orozco-Barbosa L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3030https://doi.org/10.1016/j.eswa.2021.1154862-s2.0-85109921392This work has been partially funded by the Spanish Ministry of Sci-ence, Education and Universities, the European Regional DevelopmentFund and the State Research Agency [grant number RTI2018-098156-B-C52], and by FONDECYT / World Bank [grant number 026-2019FONDECYT-BM-INC.INV].The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process. © 2021 The Author(s)Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdExpert Systems with Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/U-netDeep learning-1Deep learning-1Fully convolutional network-1Fully convolutional network-1Indoor scenes-1Indoor scenes-1Metadata preprocessing-1Metadata preprocessing-1Semantic segmentation-1Semantic segmentation-1https://purl.org/pe-repo/ocde/ford#2.02.04-1On the relevance of the metadata used in the semantic segmentation of indoor image spacesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3030oai:repositorio.concytec.gob.pe:20.500.12390/30302024-05-30 16:13:17.954https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2f061a5b-8c31-47b3-b95e-f849c21cf37d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>On the relevance of the metadata used in the semantic segmentation of indoor image spaces</Title> <PublishedIn> <Publication> <Title>Expert Systems with Applications</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.eswa.2021.115486</DOI> <SCP-Number>2-s2.0-85109921392</SCP-Number> <Authors> <Author> <DisplayName>Vasquez-Espinoza L.</DisplayName> <Person id="rp08674" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castillo-Cara M.</DisplayName> <Person id="rp01248" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Orozco-Barbosa L.</DisplayName> <Person id="rp01251" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>U-net</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Fully convolutional network</Keyword> <Keyword>Fully convolutional network</Keyword> <Keyword>Indoor scenes</Keyword> <Keyword>Indoor scenes</Keyword> <Keyword>Metadata preprocessing</Keyword> <Keyword>Metadata preprocessing</Keyword> <Keyword>Semantic segmentation</Keyword> <Keyword>Semantic segmentation</Keyword> <Abstract>The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process. © 2021 The Author(s)</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
12.811033 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).