Predicting Obesity in Nutritional Patients using Decision Tree Modeling

Descripción del Articulo

Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study ai...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Mirano-Portilla, Luis, Gamarra-Mendoza, Manuel, Robles-Espiritu, Wilmer
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3187
Enlace del recurso:https://hdl.handle.net/20.500.13067/3187
https://doi.org/10.14569/IJACSA.2024.0150326
Nivel de acceso:acceso abierto
Materia:Obesity
Machine Learning (ML)
Decision Tree (DT)
Prediction
CRISP-DM
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_cb82f6d8bcbe3bb08329743a4953b94f
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3187
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoMirano-Portilla, LuisGamarra-Mendoza, ManuelRobles-Espiritu, Wilmer2024-05-23T19:09:03Z2024-05-23T19:09:03Z2023https://hdl.handle.net/20.500.13067/3187International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2024.0150326Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study aimed to predict obesity levels in nutritional patients by analyzing their physical and dietary habits using the Decision Tree (DT) model. For the development of this work, we chose to use the CRISP-DM framework to follow the development in an organized way, thus achieving a better understanding of the data and describing, evaluating, and analyzing the results. The results of this work yielded metrics with significant values for predicting obesity: so much so that the accuracy rate was 92.89%, the sensitivity rate was 94% and the F1 score was 93%. Likewise, accuracy metrics above 88% were obtained for each level of obesity, demonstrating the effectiveness of the DT model in predicting this type of task. Finally, the results demonstrate that the DT model is effective in predicting obesity, with significant results that motivate further research to continue improving accuracy in this type of task.application/pdfengThe Science and Information Organizationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ObesityMachine Learning (ML)Decision Tree (DT)PredictionCRISP-DMhttps://purl.org/pe-repo/ocde/ford#2.02.04Predicting Obesity in Nutritional Patients using Decision Tree Modelinginfo:eu-repo/semantics/article153254260reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL23.pdf23.pdfArtículoapplication/pdf449664http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/1/23.pdf4e97de29ad61d4d76541640451f99903MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT23.pdf.txt23.pdf.txtExtracted texttext/plain39970http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/3/23.pdf.txt0bdfe3a99405bded1a017c84d8f1b040MD53THUMBNAIL23.pdf.jpg23.pdf.jpgGenerated Thumbnailimage/jpeg8504http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/4/23.pdf.jpg2871d962935377b13309195421fb7b7fMD5420.500.13067/3187oai:repositorio.autonoma.edu.pe:20.500.13067/31872025-01-06 15:19:34.507Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Predicting Obesity in Nutritional Patients using Decision Tree Modeling
title Predicting Obesity in Nutritional Patients using Decision Tree Modeling
spellingShingle Predicting Obesity in Nutritional Patients using Decision Tree Modeling
Iparraguirre-Villanueva, Orlando
Obesity
Machine Learning (ML)
Decision Tree (DT)
Prediction
CRISP-DM
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predicting Obesity in Nutritional Patients using Decision Tree Modeling
title_full Predicting Obesity in Nutritional Patients using Decision Tree Modeling
title_fullStr Predicting Obesity in Nutritional Patients using Decision Tree Modeling
title_full_unstemmed Predicting Obesity in Nutritional Patients using Decision Tree Modeling
title_sort Predicting Obesity in Nutritional Patients using Decision Tree Modeling
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Mirano-Portilla, Luis
Gamarra-Mendoza, Manuel
Robles-Espiritu, Wilmer
author_role author
author2 Mirano-Portilla, Luis
Gamarra-Mendoza, Manuel
Robles-Espiritu, Wilmer
author2_role author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Mirano-Portilla, Luis
Gamarra-Mendoza, Manuel
Robles-Espiritu, Wilmer
dc.subject.es_PE.fl_str_mv Obesity
Machine Learning (ML)
Decision Tree (DT)
Prediction
CRISP-DM
topic Obesity
Machine Learning (ML)
Decision Tree (DT)
Prediction
CRISP-DM
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study aimed to predict obesity levels in nutritional patients by analyzing their physical and dietary habits using the Decision Tree (DT) model. For the development of this work, we chose to use the CRISP-DM framework to follow the development in an organized way, thus achieving a better understanding of the data and describing, evaluating, and analyzing the results. The results of this work yielded metrics with significant values for predicting obesity: so much so that the accuracy rate was 92.89%, the sensitivity rate was 94% and the F1 score was 93%. Likewise, accuracy metrics above 88% were obtained for each level of obesity, demonstrating the effectiveness of the DT model in predicting this type of task. Finally, the results demonstrate that the DT model is effective in predicting obesity, with significant results that motivate further research to continue improving accuracy in this type of task.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-05-23T19:09:03Z
dc.date.available.none.fl_str_mv 2024-05-23T19:09:03Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3187
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.14569/IJACSA.2024.0150326
url https://hdl.handle.net/20.500.13067/3187
https://doi.org/10.14569/IJACSA.2024.0150326
identifier_str_mv International Journal of Advanced Computer Science and Applications
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv The Science and Information Organization
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 15
dc.source.issue.es_PE.fl_str_mv 3
dc.source.beginpage.es_PE.fl_str_mv 254
dc.source.endpage.es_PE.fl_str_mv 260
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/1/23.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/3/23.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/4/23.pdf.jpg
bitstream.checksum.fl_str_mv 4e97de29ad61d4d76541640451f99903
9243398ff393db1861c890baeaeee5f9
0bdfe3a99405bded1a017c84d8f1b040
2871d962935377b13309195421fb7b7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915362750693376
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).