Predicting Obesity in Nutritional Patients using Decision Tree Modeling
Descripción del Articulo
Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study ai...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3187 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3187 https://doi.org/10.14569/IJACSA.2024.0150326 |
Nivel de acceso: | acceso abierto |
Materia: | Obesity Machine Learning (ML) Decision Tree (DT) Prediction CRISP-DM https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_cb82f6d8bcbe3bb08329743a4953b94f |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3187 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Iparraguirre-Villanueva, OrlandoMirano-Portilla, LuisGamarra-Mendoza, ManuelRobles-Espiritu, Wilmer2024-05-23T19:09:03Z2024-05-23T19:09:03Z2023https://hdl.handle.net/20.500.13067/3187International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2024.0150326Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study aimed to predict obesity levels in nutritional patients by analyzing their physical and dietary habits using the Decision Tree (DT) model. For the development of this work, we chose to use the CRISP-DM framework to follow the development in an organized way, thus achieving a better understanding of the data and describing, evaluating, and analyzing the results. The results of this work yielded metrics with significant values for predicting obesity: so much so that the accuracy rate was 92.89%, the sensitivity rate was 94% and the F1 score was 93%. Likewise, accuracy metrics above 88% were obtained for each level of obesity, demonstrating the effectiveness of the DT model in predicting this type of task. Finally, the results demonstrate that the DT model is effective in predicting obesity, with significant results that motivate further research to continue improving accuracy in this type of task.application/pdfengThe Science and Information Organizationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ObesityMachine Learning (ML)Decision Tree (DT)PredictionCRISP-DMhttps://purl.org/pe-repo/ocde/ford#2.02.04Predicting Obesity in Nutritional Patients using Decision Tree Modelinginfo:eu-repo/semantics/article153254260reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL23.pdf23.pdfArtículoapplication/pdf449664http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/1/23.pdf4e97de29ad61d4d76541640451f99903MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT23.pdf.txt23.pdf.txtExtracted texttext/plain39970http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/3/23.pdf.txt0bdfe3a99405bded1a017c84d8f1b040MD53THUMBNAIL23.pdf.jpg23.pdf.jpgGenerated Thumbnailimage/jpeg8504http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/4/23.pdf.jpg2871d962935377b13309195421fb7b7fMD5420.500.13067/3187oai:repositorio.autonoma.edu.pe:20.500.13067/31872025-01-06 15:19:34.507Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
title |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
spellingShingle |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling Iparraguirre-Villanueva, Orlando Obesity Machine Learning (ML) Decision Tree (DT) Prediction CRISP-DM https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
title_full |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
title_fullStr |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
title_full_unstemmed |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
title_sort |
Predicting Obesity in Nutritional Patients using Decision Tree Modeling |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Mirano-Portilla, Luis Gamarra-Mendoza, Manuel Robles-Espiritu, Wilmer |
author_role |
author |
author2 |
Mirano-Portilla, Luis Gamarra-Mendoza, Manuel Robles-Espiritu, Wilmer |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Mirano-Portilla, Luis Gamarra-Mendoza, Manuel Robles-Espiritu, Wilmer |
dc.subject.es_PE.fl_str_mv |
Obesity Machine Learning (ML) Decision Tree (DT) Prediction CRISP-DM |
topic |
Obesity Machine Learning (ML) Decision Tree (DT) Prediction CRISP-DM https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Obesity has become a widespread problem that affects not only physical well-being but also mental health. To address this problem and provide solutions, Machine Learning (ML) technology tools are being applied. Studies are currently being developed to improve the prediction of obesity. This study aimed to predict obesity levels in nutritional patients by analyzing their physical and dietary habits using the Decision Tree (DT) model. For the development of this work, we chose to use the CRISP-DM framework to follow the development in an organized way, thus achieving a better understanding of the data and describing, evaluating, and analyzing the results. The results of this work yielded metrics with significant values for predicting obesity: so much so that the accuracy rate was 92.89%, the sensitivity rate was 94% and the F1 score was 93%. Likewise, accuracy metrics above 88% were obtained for each level of obesity, demonstrating the effectiveness of the DT model in predicting this type of task. Finally, the results demonstrate that the DT model is effective in predicting obesity, with significant results that motivate further research to continue improving accuracy in this type of task. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-05-23T19:09:03Z |
dc.date.available.none.fl_str_mv |
2024-05-23T19:09:03Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3187 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.14569/IJACSA.2024.0150326 |
url |
https://hdl.handle.net/20.500.13067/3187 https://doi.org/10.14569/IJACSA.2024.0150326 |
identifier_str_mv |
International Journal of Advanced Computer Science and Applications |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The Science and Information Organization |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
15 |
dc.source.issue.es_PE.fl_str_mv |
3 |
dc.source.beginpage.es_PE.fl_str_mv |
254 |
dc.source.endpage.es_PE.fl_str_mv |
260 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/1/23.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/3/23.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3187/4/23.pdf.jpg |
bitstream.checksum.fl_str_mv |
4e97de29ad61d4d76541640451f99903 9243398ff393db1861c890baeaeee5f9 0bdfe3a99405bded1a017c84d8f1b040 2871d962935377b13309195421fb7b7f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915362750693376 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).