Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic

Descripción del Articulo

This paper focuses on the mathematical construction of a model that describes the statistical properties of a second wave of infections by Corona Virus Disease 2019 (Covid-19 in short) from the information of a first one. Basically this study is done having as grounds a topological model based at re...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1664
Enlace del recurso:https://hdl.handle.net/20.500.13067/1664
https://doi.org/10.1109/WorldS451998.2021.9514033
Nivel de acceso:acceso restringido
Materia:COVID-19
Surveillance
Stochastic processes
Predictive models
Probabilistic logic
Data models
Vaccines
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_c68e0f7ae1e35a9e0ea113195ea27cbd
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1664
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2022-02-25T01:14:21Z2022-02-25T01:14:21Z2021-08-19Nieto-Chaupis, H. (2021, July). Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 260-265). IEEE.978-1-6654-0096-1https://hdl.handle.net/20.500.13067/16642021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)https://doi.org/10.1109/WorldS451998.2021.9514033This paper focuses on the mathematical construction of a model that describes the statistical properties of a second wave of infections by Corona Virus Disease 2019 (Covid-19 in short) from the information of a first one. Basically this study is done having as grounds a topological model based at rectangles. Thus, perimeters and distances between rectangles might be encompassed to a real data through valid approximations. A full trapezoid model is also proposed. The two-rectangles model appears that fits well to the Philippines covid-19 data. It is seen that while both rectangles are pretty separated, the the peak of second wave turns out to be high. From this an exponential formulation is derived, and fits well the exponential morphology as seen in Covid-19 data France.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA260265reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMACOVID-19SurveillanceStochastic processesPredictive modelsProbabilistic logicData modelsVaccineshttps://purl.org/pe-repo/ocde/ford#2.02.04Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemicinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114477026&doi=10.1109%2fWorldS451998.2021.9514033&partnerID=LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdfAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdfVer fuenteapplication/pdf99078http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/3/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdfa37dfdcb8146f1436f12a5a35e6a6aebMD53TEXTAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdf.txtAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdf.txtExtracted texttext/plain590http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/4/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdf.txt8d0ad2acd3929e7793490ff027a93a7bMD54THUMBNAILAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdf.jpgAnticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic.pdf.jpgGenerated Thumbnailimage/jpeg5829http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/5/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdf.jpge02ee61c455a2767f07e32bb8962fbaeMD5520.500.13067/1664oai:repositorio.autonoma.edu.pe:20.500.13067/16642022-02-25 03:00:23.258Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
title Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
spellingShingle Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
Nieto-Chaupis, Huber
COVID-19
Surveillance
Stochastic processes
Predictive models
Probabilistic logic
Data models
Vaccines
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
title_full Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
title_fullStr Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
title_full_unstemmed Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
title_sort Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv COVID-19
Surveillance
Stochastic processes
Predictive models
Probabilistic logic
Data models
Vaccines
topic COVID-19
Surveillance
Stochastic processes
Predictive models
Probabilistic logic
Data models
Vaccines
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This paper focuses on the mathematical construction of a model that describes the statistical properties of a second wave of infections by Corona Virus Disease 2019 (Covid-19 in short) from the information of a first one. Basically this study is done having as grounds a topological model based at rectangles. Thus, perimeters and distances between rectangles might be encompassed to a real data through valid approximations. A full trapezoid model is also proposed. The two-rectangles model appears that fits well to the Philippines covid-19 data. It is seen that while both rectangles are pretty separated, the the peak of second wave turns out to be high. From this an exponential formulation is derived, and fits well the exponential morphology as seen in Covid-19 data France.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-02-25T01:14:21Z
dc.date.available.none.fl_str_mv 2022-02-25T01:14:21Z
dc.date.issued.fl_str_mv 2021-08-19
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Nieto-Chaupis, H. (2021, July). Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 260-265). IEEE.
dc.identifier.isbn.none.fl_str_mv 978-1-6654-0096-1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1664
dc.identifier.journal.es_PE.fl_str_mv 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/WorldS451998.2021.9514033
identifier_str_mv Nieto-Chaupis, H. (2021, July). Anticipating Subsequent Waves from First Wave Parameters in the Ongoing Covid-19 Pandemic. In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4) (pp. 260-265). IEEE.
978-1-6654-0096-1
2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)
url https://hdl.handle.net/20.500.13067/1664
https://doi.org/10.1109/WorldS451998.2021.9514033
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114477026&doi=10.1109%2fWorldS451998.2021.9514033&partnerID=
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 260
dc.source.endpage.es_PE.fl_str_mv 265
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/3/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/4/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1664/5/Anticipating%20Subsequent%20Waves%20from%20First%20Wave%20Parameters%20in%20the%20Ongoing%20Covid-19%20Pandemic.pdf.jpg
bitstream.checksum.fl_str_mv 9243398ff393db1861c890baeaeee5f9
a37dfdcb8146f1436f12a5a35e6a6aeb
8d0ad2acd3929e7793490ff027a93a7b
e02ee61c455a2767f07e32bb8962fbae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1774399973717180416
score 13.926692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).