Price Prediction of Agricultural Products: Machine Learning
Descripción del Articulo
Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has,...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1634 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1634 https://doi.org/10.1007/978-981-16-2102-4_78 |
Nivel de acceso: | acceso restringido |
Materia: | Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_5dbd0f5d490d7bc947fc4dee6528e5e1 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1634 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Cerna, RinoTirado, EduardoBayona-Oré, Sussy2022-02-16T22:52:35Z2022-02-16T22:52:35Z2021-10-27978-981-16-2102-4https://hdl.handle.net/20.500.13067/1634Lecture Notes in Networks and Systemshttps://doi.org/10.1007/978-981-16-2102-4_78Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has, in particular, models and algorithms that allow for price prediction. The aim of this work is to review the literature related to price prediction of agricultural products using machine learning technology with the purpose of identifying the prediction models used in the studies. It also aims to identify the agricultural products used in these predictions to discuss their application in other products. The results show that neural network model is the most used in the selected studies.application/pdfspaSpringerPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA217879887reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine learningPrice predictionAgricultureFarmingFamily farmhttps://purl.org/pe-repo/ocde/ford#2.02.04Price Prediction of Agricultural Products: Machine Learninginfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119004258&doi=10.1007%2f978-981-16-2102-4_78&partnerID=40&md5LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALPrice Prediction of Agricultural Products Machine Learning.pdfPrice Prediction of Agricultural Products Machine Learning.pdfVer fuenteapplication/pdf99025http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/3/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf907fecdb0580c6a6275053e03eb55374MD53TEXTPrice Prediction of Agricultural Products Machine Learning.pdf.txtPrice Prediction of Agricultural Products Machine Learning.pdf.txtExtracted texttext/plain487http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/4/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf.txt48eb863e245a9ce629d677ae8ebe7f6fMD54THUMBNAILPrice Prediction of Agricultural Products Machine Learning.pdf.jpgPrice Prediction of Agricultural Products Machine Learning.pdf.jpgGenerated Thumbnailimage/jpeg5637http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/5/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf.jpga5b743b80f15ae828cff54c2c906da8dMD5520.500.13067/1634oai:repositorio.autonoma.edu.pe:20.500.13067/16342022-02-17 03:00:23.042Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Price Prediction of Agricultural Products: Machine Learning |
title |
Price Prediction of Agricultural Products: Machine Learning |
spellingShingle |
Price Prediction of Agricultural Products: Machine Learning Cerna, Rino Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Price Prediction of Agricultural Products: Machine Learning |
title_full |
Price Prediction of Agricultural Products: Machine Learning |
title_fullStr |
Price Prediction of Agricultural Products: Machine Learning |
title_full_unstemmed |
Price Prediction of Agricultural Products: Machine Learning |
title_sort |
Price Prediction of Agricultural Products: Machine Learning |
author |
Cerna, Rino |
author_facet |
Cerna, Rino Tirado, Eduardo Bayona-Oré, Sussy |
author_role |
author |
author2 |
Tirado, Eduardo Bayona-Oré, Sussy |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cerna, Rino Tirado, Eduardo Bayona-Oré, Sussy |
dc.subject.es_PE.fl_str_mv |
Machine learning Price prediction Agriculture Farming Family farm |
topic |
Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Family farming is essentially characterized by the use of family labor force, due to the lack of land, water, and capital resources. An important tool is which allows them to know which products will be the best priced when production is completed, and at this point machine learning technology has, in particular, models and algorithms that allow for price prediction. The aim of this work is to review the literature related to price prediction of agricultural products using machine learning technology with the purpose of identifying the prediction models used in the studies. It also aims to identify the agricultural products used in these predictions to discuss their application in other products. The results show that neural network model is the most used in the selected studies. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-16T22:52:35Z |
dc.date.available.none.fl_str_mv |
2022-02-16T22:52:35Z |
dc.date.issued.fl_str_mv |
2021-10-27 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.isbn.none.fl_str_mv |
978-981-16-2102-4 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1634 |
dc.identifier.journal.es_PE.fl_str_mv |
Lecture Notes in Networks and Systems |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-981-16-2102-4_78 |
identifier_str_mv |
978-981-16-2102-4 Lecture Notes in Networks and Systems |
url |
https://hdl.handle.net/20.500.13067/1634 https://doi.org/10.1007/978-981-16-2102-4_78 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.url.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119004258&doi=10.1007%2f978-981-16-2102-4_78&partnerID=40&md5 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Springer |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
217 |
dc.source.beginpage.es_PE.fl_str_mv |
879 |
dc.source.endpage.es_PE.fl_str_mv |
887 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/3/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/4/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1634/5/Price%20Prediction%20of%20Agricultural%20Products%20Machine%20Learning.pdf.jpg |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 907fecdb0580c6a6275053e03eb55374 48eb863e245a9ce629d677ae8ebe7f6f a5b743b80f15ae828cff54c2c906da8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399970478129152 |
score |
13.836569 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).