Machine Learning for Price Prediction for Agricultural Products

Descripción del Articulo

Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimiz...

Descripción completa

Detalles Bibliográficos
Autores: Bayona-Oré, Sussy, Cerna, Rino, Tirado Hinojoza, Eduardo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1687
Enlace del recurso:https://hdl.handle.net/20.500.13067/1687
https://doi.org/10.37394/23207.2021.18.92
Nivel de acceso:acceso abierto
Materia:Machine learning
Price prediction
Agriculture
Farming
Family farm
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_556f16bb3b5c303af5f2dacd3ec91a2c
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1687
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Bayona-Oré, SussyCerna, RinoTirado Hinojoza, Eduardo2022-03-02T16:46:45Z2022-03-02T16:46:45Z2021-06-07Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977.2224-2899https://hdl.handle.net/20.500.13067/1687WSEAS Transactions on Business and Economicshttps://doi.org/10.37394/23207.2021.18.92Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimizing their decisions. Knowing which products will have the best prices at harvest is important to farmers. At this point, machine learning technology has been used to solve classification and prediction problems, such as price prediction. This work aims to review the literature in this area related to price prediction for agricultural products and seeks to identify the research paradigms employed, the type of research used, the most commonly used algorithms and techniques for evaluation, and the agricultural products used in these predictions. The results show that the mostly commonly used research paradigm is positivism, the research is quantitative and longitudinal in nature and neural networks are the most commonly used algorithms.977application/pdfengWorld Scientific and Engineering Academy and SocietyPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA18969reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine learningPrice predictionAgricultureFarmingFamily farmhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning for Price Prediction for Agricultural Productsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112610779&doi=10.37394%2f23207.2021.18.92&partnerID=40&md5ORIGINALMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfArtículoapplication/pdf1076068http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/1/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfc8b5a064295c2fc7b0140c57019ee329MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtExtracted texttext/plain30717http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/3/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtd9ca236a1838912f969a72c254c397d9MD53THUMBNAILMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpgMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpgGenerated Thumbnailimage/jpeg7233http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/4/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpg109826a80396dec4e4ecbde922bd24bfMD5420.500.13067/1687oai:repositorio.autonoma.edu.pe:20.500.13067/16872022-03-03 03:00:21.768Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
dc.title.es_PE.fl_str_mv Machine Learning for Price Prediction for Agricultural Products
title Machine Learning for Price Prediction for Agricultural Products
spellingShingle Machine Learning for Price Prediction for Agricultural Products
Bayona-Oré, Sussy
Machine learning
Price prediction
Agriculture
Farming
Family farm
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Machine Learning for Price Prediction for Agricultural Products
title_full Machine Learning for Price Prediction for Agricultural Products
title_fullStr Machine Learning for Price Prediction for Agricultural Products
title_full_unstemmed Machine Learning for Price Prediction for Agricultural Products
title_sort Machine Learning for Price Prediction for Agricultural Products
author Bayona-Oré, Sussy
author_facet Bayona-Oré, Sussy
Cerna, Rino
Tirado Hinojoza, Eduardo
author_role author
author2 Cerna, Rino
Tirado Hinojoza, Eduardo
author2_role author
author
dc.contributor.author.fl_str_mv Bayona-Oré, Sussy
Cerna, Rino
Tirado Hinojoza, Eduardo
dc.subject.es_PE.fl_str_mv Machine learning
Price prediction
Agriculture
Farming
Family farm
topic Machine learning
Price prediction
Agriculture
Farming
Family farm
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimizing their decisions. Knowing which products will have the best prices at harvest is important to farmers. At this point, machine learning technology has been used to solve classification and prediction problems, such as price prediction. This work aims to review the literature in this area related to price prediction for agricultural products and seeks to identify the research paradigms employed, the type of research used, the most commonly used algorithms and techniques for evaluation, and the agricultural products used in these predictions. The results show that the mostly commonly used research paradigm is positivism, the research is quantitative and longitudinal in nature and neural networks are the most commonly used algorithms.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-03-02T16:46:45Z
dc.date.available.none.fl_str_mv 2022-03-02T16:46:45Z
dc.date.issued.fl_str_mv 2021-06-07
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977.
dc.identifier.issn.none.fl_str_mv 2224-2899
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1687
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Business and Economics
dc.identifier.doi.none.fl_str_mv https://doi.org/10.37394/23207.2021.18.92
identifier_str_mv Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977.
2224-2899
WSEAS Transactions on Business and Economics
url https://hdl.handle.net/20.500.13067/1687
https://doi.org/10.37394/23207.2021.18.92
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112610779&doi=10.37394%2f23207.2021.18.92&partnerID=40&md5
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 18
dc.source.endpage.es_PE.fl_str_mv 969
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/1/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/3/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/4/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpg
bitstream.checksum.fl_str_mv c8b5a064295c2fc7b0140c57019ee329
9243398ff393db1861c890baeaeee5f9
d9ca236a1838912f969a72c254c397d9
109826a80396dec4e4ecbde922bd24bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915417713901568
score 13.836569
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).