Machine Learning for Price Prediction for Agricultural Products
Descripción del Articulo
Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimiz...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1687 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1687 https://doi.org/10.37394/23207.2021.18.92 |
Nivel de acceso: | acceso abierto |
Materia: | Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_556f16bb3b5c303af5f2dacd3ec91a2c |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1687 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Bayona-Oré, SussyCerna, RinoTirado Hinojoza, Eduardo2022-03-02T16:46:45Z2022-03-02T16:46:45Z2021-06-07Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977.2224-2899https://hdl.handle.net/20.500.13067/1687WSEAS Transactions on Business and Economicshttps://doi.org/10.37394/23207.2021.18.92Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimizing their decisions. Knowing which products will have the best prices at harvest is important to farmers. At this point, machine learning technology has been used to solve classification and prediction problems, such as price prediction. This work aims to review the literature in this area related to price prediction for agricultural products and seeks to identify the research paradigms employed, the type of research used, the most commonly used algorithms and techniques for evaluation, and the agricultural products used in these predictions. The results show that the mostly commonly used research paradigm is positivism, the research is quantitative and longitudinal in nature and neural networks are the most commonly used algorithms.977application/pdfengWorld Scientific and Engineering Academy and SocietyPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA18969reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine learningPrice predictionAgricultureFarmingFamily farmhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning for Price Prediction for Agricultural Productsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112610779&doi=10.37394%2f23207.2021.18.92&partnerID=40&md5ORIGINALMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfArtículoapplication/pdf1076068http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/1/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdfc8b5a064295c2fc7b0140c57019ee329MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtExtracted texttext/plain30717http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/3/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txtd9ca236a1838912f969a72c254c397d9MD53THUMBNAILMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpgMachine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpgGenerated Thumbnailimage/jpeg7233http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/4/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpg109826a80396dec4e4ecbde922bd24bfMD5420.500.13067/1687oai:repositorio.autonoma.edu.pe:20.500.13067/16872022-03-03 03:00:21.768Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Machine Learning for Price Prediction for Agricultural Products |
title |
Machine Learning for Price Prediction for Agricultural Products |
spellingShingle |
Machine Learning for Price Prediction for Agricultural Products Bayona-Oré, Sussy Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Machine Learning for Price Prediction for Agricultural Products |
title_full |
Machine Learning for Price Prediction for Agricultural Products |
title_fullStr |
Machine Learning for Price Prediction for Agricultural Products |
title_full_unstemmed |
Machine Learning for Price Prediction for Agricultural Products |
title_sort |
Machine Learning for Price Prediction for Agricultural Products |
author |
Bayona-Oré, Sussy |
author_facet |
Bayona-Oré, Sussy Cerna, Rino Tirado Hinojoza, Eduardo |
author_role |
author |
author2 |
Cerna, Rino Tirado Hinojoza, Eduardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bayona-Oré, Sussy Cerna, Rino Tirado Hinojoza, Eduardo |
dc.subject.es_PE.fl_str_mv |
Machine learning Price prediction Agriculture Farming Family farm |
topic |
Machine learning Price prediction Agriculture Farming Family farm https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Family farms play a role in economic development. Limited in terms of land, water and capital resources, family farming is essentially characterized by its use of family labour. Family farms must choose which agricultural products to produce; however, they do not have the necessary tools for optimizing their decisions. Knowing which products will have the best prices at harvest is important to farmers. At this point, machine learning technology has been used to solve classification and prediction problems, such as price prediction. This work aims to review the literature in this area related to price prediction for agricultural products and seeks to identify the research paradigms employed, the type of research used, the most commonly used algorithms and techniques for evaluation, and the agricultural products used in these predictions. The results show that the mostly commonly used research paradigm is positivism, the research is quantitative and longitudinal in nature and neural networks are the most commonly used algorithms. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-02T16:46:45Z |
dc.date.available.none.fl_str_mv |
2022-03-02T16:46:45Z |
dc.date.issued.fl_str_mv |
2021-06-07 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977. |
dc.identifier.issn.none.fl_str_mv |
2224-2899 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1687 |
dc.identifier.journal.es_PE.fl_str_mv |
WSEAS Transactions on Business and Economics |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.37394/23207.2021.18.92 |
identifier_str_mv |
Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine Learning for Price Prediction for Agricultural Products. WSEAS Transactions on Business and Economics, 18, 969-977. 2224-2899 WSEAS Transactions on Business and Economics |
url |
https://hdl.handle.net/20.500.13067/1687 https://doi.org/10.37394/23207.2021.18.92 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112610779&doi=10.37394%2f23207.2021.18.92&partnerID=40&md5 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
World Scientific and Engineering Academy and Society |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
18 |
dc.source.endpage.es_PE.fl_str_mv |
969 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/1/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/3/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1687/4/Machine-Learning-For-Price-Prediction-For-Agricultural-Products.pdf.jpg |
bitstream.checksum.fl_str_mv |
c8b5a064295c2fc7b0140c57019ee329 9243398ff393db1861c890baeaeee5f9 d9ca236a1838912f969a72c254c397d9 109826a80396dec4e4ecbde922bd24bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915417713901568 |
score |
13.836569 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).