Attack prevention in IoT through hybrid optimization mechanism and deep learning framework

Descripción del Articulo

The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acq...

Descripción completa

Detalles Bibliográficos
Autores: Nagaraju, Regonda, Pentang, Jupeth Toriano, Abdufattokhov, Shokhjakhon, CosioBorda, Ricardo Fernando, Mageswari, N., Uganya, G.
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2607
Enlace del recurso:https://hdl.handle.net/20.500.13067/2607
https://doi.org/10.1016/j.measen.2022.100431
Nivel de acceso:acceso abierto
Materia:Grey wolf optimization
Whale optimization
Internet of things
Deep learning
Cybersecurity
Whale with grey wolf optimization
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_0e254901d8fdf2202fda93bb719d7e87
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2607
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nagaraju, RegondaPentang, Jupeth TorianoAbdufattokhov, ShokhjakhonCosioBorda, Ricardo FernandoMageswari, N.Uganya, G.2023-09-21T15:12:05Z2023-09-21T15:12:05Z2022https://hdl.handle.net/20.500.13067/2607Measurement: Sensorshttps://doi.org/10.1016/j.measen.2022.100431The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge data set, the cybersecurity warning systems index system is first constructed, then the index factors are picked and measured, and finally, the situation evaluation is done.Numerous bio-inspired techniques were used to enhance the productivity of an IDS by lowering the data dimensionality and deleting unnecessary and noisy input. The Grey Wolf Optimization algorithm (GWO) is a developed bio-inspired algorithm that improves the efficacy of the IDS in detecting both regular and abnormal congestion in the network. The smart initialization step integrates the different pre-processing strategies to make sure that informative features are incorporated in the early development stages, has been improved. Researchers pick multi-source material in a big data environment for the identification and verification of index components and present a parallel reduction approach based on the classification significance matrix to decrease data underlying data characteristics. For the simulation of this situation, grey wolf optimization and whale optimization were combined to detect the attack prevention and the deep learning approach was presented. Utilizing system software plagiarism, the TensorFlow deep neural network is intended to classify stolen software. To reduce the noise from the signal and to zoom the significance of each word in the perspective of open-source plagiarism, the tokenization and weighting feature approaches are utilized. Malware specimens have been collected from the Mailing database for testing purposes. The experimental findings show that the suggested technique for measuring cyber security hazards in IoT has superior classification results to existing methods. Hence to detect the attack prevention in IoT process Whale with Grey wolf optimization (WGWO) and deep convolution network is used.application/pdfengElsevierinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Grey wolf optimizationWhale optimizationInternet of thingsDeep learningCybersecurityWhale with grey wolf optimizationhttps://purl.org/pe-repo/ocde/ford#2.02.04Attack prevention in IoT through hybrid optimization mechanism and deep learning frameworkinfo:eu-repo/semantics/article242022110reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL2_2022.pdf2_2022.pdfArtículoapplication/pdf5182982http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/1/2_2022.pdfdc6a3e2b75f897531a7c4f62bb62e01bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT2_2022.pdf.txt2_2022.pdf.txtExtracted texttext/plain51488http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/3/2_2022.pdf.txte0f529b6b764c305a6faebe030c54c44MD53THUMBNAIL2_2022.pdf.jpg2_2022.pdf.jpgGenerated Thumbnailimage/jpeg7230http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/4/2_2022.pdf.jpg02948a2415277db4dd5ba373e22ff881MD5420.500.13067/2607oai:repositorio.autonoma.edu.pe:20.500.13067/26072025-10-13 17:02:52.056Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
title Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
spellingShingle Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
Nagaraju, Regonda
Grey wolf optimization
Whale optimization
Internet of things
Deep learning
Cybersecurity
Whale with grey wolf optimization
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
title_full Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
title_fullStr Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
title_full_unstemmed Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
title_sort Attack prevention in IoT through hybrid optimization mechanism and deep learning framework
author Nagaraju, Regonda
author_facet Nagaraju, Regonda
Pentang, Jupeth Toriano
Abdufattokhov, Shokhjakhon
CosioBorda, Ricardo Fernando
Mageswari, N.
Uganya, G.
author_role author
author2 Pentang, Jupeth Toriano
Abdufattokhov, Shokhjakhon
CosioBorda, Ricardo Fernando
Mageswari, N.
Uganya, G.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Nagaraju, Regonda
Pentang, Jupeth Toriano
Abdufattokhov, Shokhjakhon
CosioBorda, Ricardo Fernando
Mageswari, N.
Uganya, G.
dc.subject.es_PE.fl_str_mv Grey wolf optimization
Whale optimization
Internet of things
Deep learning
Cybersecurity
Whale with grey wolf optimization
topic Grey wolf optimization
Whale optimization
Internet of things
Deep learning
Cybersecurity
Whale with grey wolf optimization
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge data set, the cybersecurity warning systems index system is first constructed, then the index factors are picked and measured, and finally, the situation evaluation is done.Numerous bio-inspired techniques were used to enhance the productivity of an IDS by lowering the data dimensionality and deleting unnecessary and noisy input. The Grey Wolf Optimization algorithm (GWO) is a developed bio-inspired algorithm that improves the efficacy of the IDS in detecting both regular and abnormal congestion in the network. The smart initialization step integrates the different pre-processing strategies to make sure that informative features are incorporated in the early development stages, has been improved. Researchers pick multi-source material in a big data environment for the identification and verification of index components and present a parallel reduction approach based on the classification significance matrix to decrease data underlying data characteristics. For the simulation of this situation, grey wolf optimization and whale optimization were combined to detect the attack prevention and the deep learning approach was presented. Utilizing system software plagiarism, the TensorFlow deep neural network is intended to classify stolen software. To reduce the noise from the signal and to zoom the significance of each word in the perspective of open-source plagiarism, the tokenization and weighting feature approaches are utilized. Malware specimens have been collected from the Mailing database for testing purposes. The experimental findings show that the suggested technique for measuring cyber security hazards in IoT has superior classification results to existing methods. Hence to detect the attack prevention in IoT process Whale with Grey wolf optimization (WGWO) and deep convolution network is used.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-09-21T15:12:05Z
dc.date.available.none.fl_str_mv 2023-09-21T15:12:05Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2607
dc.identifier.journal.es_PE.fl_str_mv Measurement: Sensors
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.measen.2022.100431
url https://hdl.handle.net/20.500.13067/2607
https://doi.org/10.1016/j.measen.2022.100431
identifier_str_mv Measurement: Sensors
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 24
dc.source.issue.es_PE.fl_str_mv 2022
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 10
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/1/2_2022.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/3/2_2022.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2607/4/2_2022.pdf.jpg
bitstream.checksum.fl_str_mv dc6a3e2b75f897531a7c4f62bb62e01b
9243398ff393db1861c890baeaeee5f9
e0f529b6b764c305a6faebe030c54c44
02948a2415277db4dd5ba373e22ff881
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1846696200079671296
score 13.377223
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).