Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
Descripción del Articulo
Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients wi...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Ricardo Palma |
Repositorio: | Revista URP - Revista de la Facultad de Medicina Humana |
Lenguaje: | español inglés |
OAI Identifier: | oai:oai.revistas.urp.edu.pe:article/3264 |
Enlace del recurso: | http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264 |
Nivel de acceso: | acceso abierto |
Materia: | Risk Mortality COVID-19 Comorbidity Hospitalization |
id |
2308-0531_ecd97d7144c2b20b4b919c96e3e50754 |
---|---|
oai_identifier_str |
oai:oai.revistas.urp.edu.pe:article/3264 |
network_acronym_str |
2308-0531 |
repository_id_str |
. |
network_name_str |
Revista URP - Revista de la Facultad de Medicina Humana |
dc.title.none.fl_str_mv |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model Factores de riesgo de mortalidad por COVID-19 en pacientes hospitalizados: Un modelo de regresión logística |
title |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
spellingShingle |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model Yupari, Irma Luz Risk Mortality COVID-19 Comorbidity Hospitalization |
title_short |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
title_full |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
title_fullStr |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
title_full_unstemmed |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
title_sort |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model |
dc.creator.none.fl_str_mv |
Yupari, Irma Luz Bardales Aguirre, Lucia Rodriguez Azabache, Julio Barros Sevillano, Jaylin Rodríguez Díaz, Angela |
author |
Yupari, Irma Luz |
author_facet |
Yupari, Irma Luz Bardales Aguirre, Lucia Rodriguez Azabache, Julio Barros Sevillano, Jaylin Rodríguez Díaz, Angela |
author_role |
author |
author2 |
Bardales Aguirre, Lucia Rodriguez Azabache, Julio Barros Sevillano, Jaylin Rodríguez Díaz, Angela |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Risk Mortality COVID-19 Comorbidity Hospitalization |
topic |
Risk Mortality COVID-19 Comorbidity Hospitalization |
dc.description.none.fl_txt_mv |
Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases. Introducción: La población es susceptible al COVID-19 y conocer las características y comorbilidades más predominantes de los afectados resulta imprescindible para disminuir sus efectos. Objetivo: El presente estudio analizó los factores biológicos, sociales y clínicos de riesgo de mortalidad en pacientes hospitalizados con COVID-19 en el distrito de Trujillo, Perú. Métodos: El tipo de estudio fue descriptivo, de enfoque cuantitativo y diseño correlacional, retrospectivo, de corte transversal. Se obtuvieron los datos del sistema del Ministerio de Salud, con una muestra de 64 pacientes de marzo a mayo del 2020. Resultados:El 85,71% del total de fallecidos son del sexo masculino, la ocupación más predominante es jubilados con un 28,57% y tienen una edad promedio de 64,67 años. En el caso de los síntomas en pacientes fallecidos la dificultad respiratoria representa el mayor porcentaje 90,48%; la fiebre con un 80,95%, seguido de un malestar en general con un 57,14% y tos con un 52,38%. Los signos con mayor porcentaje en fallecidos fueron la disnea y auscultación pulmonar encontraron anormal con un 47,62%, en Comorbilidades se pacientes con enfermedad cardiovascular en un 42,86% y un 14,29% con diabetes. El modelo de regresión logística para predecir la mortalidad en pacientes hospitalizados incluidos la selección de factores de riesgo como edad, sexo, tos, dificultad respiratoria y diabetes. Conclusión: El modelo es el adecuado para establecer estos factores, ya que mostró que un porcentaje de variación explicada bastante considerable, clasificaría correctamente el 90,6% de los casos. |
description |
Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Cuantitativo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264 10.25176/RFMH.v21i1.3264 |
url |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264 |
identifier_str_mv |
10.25176/RFMH.v21i1.3264 |
dc.language.none.fl_str_mv |
spa eng |
language |
spa eng |
dc.relation.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4406 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4389 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4466 http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4473 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html text/html application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Ricardo Palma |
publisher.none.fl_str_mv |
Universidad Ricardo Palma |
dc.source.none.fl_str_mv |
Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina Humana Revista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana 2308-0531 1814-5469 reponame:Revista URP - Revista de la Facultad de Medicina Humana instname:Universidad Ricardo Palma instacron:URP |
reponame_str |
Revista URP - Revista de la Facultad de Medicina Humana |
collection |
Revista URP - Revista de la Facultad de Medicina Humana |
instname_str |
Universidad Ricardo Palma |
instacron_str |
URP |
institution |
URP |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1701472112023175168 |
spelling |
Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression ModelFactores de riesgo de mortalidad por COVID-19 en pacientes hospitalizados: Un modelo de regresión logísticaYupari, Irma LuzBardales Aguirre, LuciaRodriguez Azabache, JulioBarros Sevillano, JaylinRodríguez Díaz, AngelaRiskMortalityCOVID-19ComorbidityHospitalizationIntroduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases.Introducción: La población es susceptible al COVID-19 y conocer las características y comorbilidades más predominantes de los afectados resulta imprescindible para disminuir sus efectos. Objetivo: El presente estudio analizó los factores biológicos, sociales y clínicos de riesgo de mortalidad en pacientes hospitalizados con COVID-19 en el distrito de Trujillo, Perú. Métodos: El tipo de estudio fue descriptivo, de enfoque cuantitativo y diseño correlacional, retrospectivo, de corte transversal. Se obtuvieron los datos del sistema del Ministerio de Salud, con una muestra de 64 pacientes de marzo a mayo del 2020. Resultados:El 85,71% del total de fallecidos son del sexo masculino, la ocupación más predominante es jubilados con un 28,57% y tienen una edad promedio de 64,67 años. En el caso de los síntomas en pacientes fallecidos la dificultad respiratoria representa el mayor porcentaje 90,48%; la fiebre con un 80,95%, seguido de un malestar en general con un 57,14% y tos con un 52,38%. Los signos con mayor porcentaje en fallecidos fueron la disnea y auscultación pulmonar encontraron anormal con un 47,62%, en Comorbilidades se pacientes con enfermedad cardiovascular en un 42,86% y un 14,29% con diabetes. El modelo de regresión logística para predecir la mortalidad en pacientes hospitalizados incluidos la selección de factores de riesgo como edad, sexo, tos, dificultad respiratoria y diabetes. Conclusión: El modelo es el adecuado para establecer estos factores, ya que mostró que un porcentaje de variación explicada bastante considerable, clasificaría correctamente el 90,6% de los casos.Universidad Ricardo Palma2020-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCuantitativoapplication/pdftext/htmltext/htmlapplication/pdfhttp://revistas.urp.edu.pe/index.php/RFMH/article/view/326410.25176/RFMH.v21i1.3264Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina HumanaRevista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana2308-05311814-5469reponame:Revista URP - Revista de la Facultad de Medicina Humanainstname:Universidad Ricardo Palmainstacron:URPspaenghttp://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4406http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4389http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4466http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4473info:eu-repo/semantics/openAccess2021-06-02T16:10:27Zmail@mail.com - |
score |
13.889614 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).