Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model

Descripción del Articulo

Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients wi...

Descripción completa

Detalles Bibliográficos
Autores: Yupari, Irma Luz, Bardales Aguirre, Lucia, Rodriguez Azabache, Julio, Barros Sevillano, Jaylin, Rodríguez Díaz, Angela
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Ricardo Palma
Repositorio:Revista URP - Revista de la Facultad de Medicina Humana
Lenguaje:español
inglés
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/3264
Enlace del recurso:http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264
Nivel de acceso:acceso abierto
Materia:Risk
Mortality
COVID-19
Comorbidity
Hospitalization
id 2308-0531_ecd97d7144c2b20b4b919c96e3e50754
oai_identifier_str oai:oai.revistas.urp.edu.pe:article/3264
network_acronym_str 2308-0531
repository_id_str .
network_name_str Revista URP - Revista de la Facultad de Medicina Humana
dc.title.none.fl_str_mv Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
Factores de riesgo de mortalidad por COVID-19 en pacientes hospitalizados: Un modelo de regresión logística
title Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
spellingShingle Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
Yupari, Irma Luz
Risk
Mortality
COVID-19
Comorbidity
Hospitalization
title_short Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
title_full Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
title_fullStr Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
title_full_unstemmed Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
title_sort Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression Model
dc.creator.none.fl_str_mv Yupari, Irma Luz
Bardales Aguirre, Lucia
Rodriguez Azabache, Julio
Barros Sevillano, Jaylin
Rodríguez Díaz, Angela
author Yupari, Irma Luz
author_facet Yupari, Irma Luz
Bardales Aguirre, Lucia
Rodriguez Azabache, Julio
Barros Sevillano, Jaylin
Rodríguez Díaz, Angela
author_role author
author2 Bardales Aguirre, Lucia
Rodriguez Azabache, Julio
Barros Sevillano, Jaylin
Rodríguez Díaz, Angela
author2_role author
author
author
author
dc.subject.none.fl_str_mv Risk
Mortality
COVID-19
Comorbidity
Hospitalization
topic Risk
Mortality
COVID-19
Comorbidity
Hospitalization
dc.description.none.fl_txt_mv Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases.
Introducción: La población es susceptible al COVID-19 y conocer las características y comorbilidades más predominantes de los afectados resulta imprescindible para disminuir sus efectos. Objetivo: El presente estudio analizó los factores biológicos, sociales y clínicos de riesgo de mortalidad en pacientes hospitalizados con COVID-19 en el distrito de Trujillo, Perú. Métodos: El tipo de estudio fue descriptivo, de enfoque cuantitativo y diseño correlacional, retrospectivo, de corte transversal. Se obtuvieron los datos del sistema del Ministerio de Salud, con una muestra de 64 pacientes de marzo a mayo del 2020. Resultados:El 85,71% del total de fallecidos son del sexo masculino, la ocupación más predominante es jubilados con un 28,57% y tienen una edad promedio de 64,67 años. En el caso de los síntomas en pacientes fallecidos la dificultad respiratoria representa el mayor porcentaje 90,48%; la fiebre con un 80,95%, seguido de un malestar en general con un 57,14% y tos con un 52,38%. Los signos con mayor porcentaje en fallecidos fueron la disnea y auscultación pulmonar encontraron anormal con un 47,62%, en Comorbilidades se pacientes con enfermedad cardiovascular en un 42,86% y un 14,29% con diabetes. El modelo de regresión logística para predecir la mortalidad en pacientes hospitalizados incluidos la selección de factores de riesgo como edad, sexo, tos, dificultad respiratoria y diabetes. Conclusión: El modelo es el adecuado para establecer estos factores, ya que mostró que un porcentaje de variación explicada bastante considerable, clasificaría correctamente el 90,6% de los casos.
description Introduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Cuantitativo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264
10.25176/RFMH.v21i1.3264
url http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264
identifier_str_mv 10.25176/RFMH.v21i1.3264
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4406
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4389
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4466
http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4473
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Ricardo Palma
publisher.none.fl_str_mv Universidad Ricardo Palma
dc.source.none.fl_str_mv Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina Humana
Revista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana
2308-0531
1814-5469
reponame:Revista URP - Revista de la Facultad de Medicina Humana
instname:Universidad Ricardo Palma
instacron:URP
reponame_str Revista URP - Revista de la Facultad de Medicina Humana
collection Revista URP - Revista de la Facultad de Medicina Humana
instname_str Universidad Ricardo Palma
instacron_str URP
institution URP
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701472112023175168
spelling Risk Factors for Mortality from COVID-19 in Hospitalized Patients: A Logistic Regression ModelFactores de riesgo de mortalidad por COVID-19 en pacientes hospitalizados: Un modelo de regresión logísticaYupari, Irma LuzBardales Aguirre, LuciaRodriguez Azabache, JulioBarros Sevillano, JaylinRodríguez Díaz, AngelaRiskMortalityCOVID-19ComorbidityHospitalizationIntroduction: The population is susceptible to COVID-19 and knowing the most predominant characteristics and comorbidities of those affected is essential to diminish its effects. Objective: This study analyzed the biological, social and clinical risk factors for mortality in hospitalized patients with COVID-19 in the district of Trujillo, Peru. Methods: A descriptive type of study was made, with a quantitative approach and a correlational, retrospective, cross-sectional design. Data was obtained from the Ministry of Health’s database, with a sample of 64 patients from March to May 2020. Results: 85,71% of the total deceased are male, the most predominant occupation is Retired with an 28,57% incidence, and an average age of 64,67 years. When it came to symptoms of deceased patients, respiratory distress represents the highest percentage of incidence with 90,48%, then fever with 80,95%, followed by malaise in general with 57,14% and cough with 52,38%. The signs that indicated the highest percentage in deaths were dyspnea and abnormal pulmonary auscultation with 47,62%, in Comorbidities patients with cardiovascular disease were found in 42,86% and 14,29% with diabetes. The logistic regression model to predict mortality in hospitalized patients allowed the selection of risk factors such as age, sex, cough, shortness of breath and diabetes. Conclusion: The model is adequate to establish these factors, since they show that a fairly considerable percentage of explained variation would correctly classify 90,6% of the cases.Introducción: La población es susceptible al COVID-19 y conocer las características y comorbilidades más predominantes de los afectados resulta imprescindible para disminuir sus efectos. Objetivo: El presente estudio analizó los factores biológicos, sociales y clínicos de riesgo de mortalidad en pacientes hospitalizados con COVID-19 en el distrito de Trujillo, Perú. Métodos: El tipo de estudio fue descriptivo, de enfoque cuantitativo y diseño correlacional, retrospectivo, de corte transversal. Se obtuvieron los datos del sistema del Ministerio de Salud, con una muestra de 64 pacientes de marzo a mayo del 2020. Resultados:El 85,71% del total de fallecidos son del sexo masculino, la ocupación más predominante es jubilados con un 28,57% y tienen una edad promedio de 64,67 años. En el caso de los síntomas en pacientes fallecidos la dificultad respiratoria representa el mayor porcentaje 90,48%; la fiebre con un 80,95%, seguido de un malestar en general con un 57,14% y tos con un 52,38%. Los signos con mayor porcentaje en fallecidos fueron la disnea y auscultación pulmonar encontraron anormal con un 47,62%, en Comorbilidades se pacientes con enfermedad cardiovascular en un 42,86% y un 14,29% con diabetes. El modelo de regresión logística para predecir la mortalidad en pacientes hospitalizados incluidos la selección de factores de riesgo como edad, sexo, tos, dificultad respiratoria y diabetes. Conclusión: El modelo es el adecuado para establecer estos factores, ya que mostró que un porcentaje de variación explicada bastante considerable, clasificaría correctamente el 90,6% de los casos.Universidad Ricardo Palma2020-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCuantitativoapplication/pdftext/htmltext/htmlapplication/pdfhttp://revistas.urp.edu.pe/index.php/RFMH/article/view/326410.25176/RFMH.v21i1.3264Revista de la Facultad de Medicina Humana; Vol 21 No 1 (2021): Revista de la Facultad de Medicina HumanaRevista de la Facultad de Medicina Humana; Vol. 21 Núm. 1 (2021): Revista de la Facultad de Medicina Humana2308-05311814-5469reponame:Revista URP - Revista de la Facultad de Medicina Humanainstname:Universidad Ricardo Palmainstacron:URPspaenghttp://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4406http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4389http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4466http://revistas.urp.edu.pe/index.php/RFMH/article/view/3264/4473info:eu-repo/semantics/openAccess2021-06-02T16:10:27Zmail@mail.com -
score 13.889614
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).