Graph-type biharmonic surfaces in R3

Descripción del Articulo

In this work, we study biharmonic surfaces that are parameterized by biharmonic coordinate functions. We study a class of biharmonic surfaces called graph-type biharmonic surfaces. Also, we define a class of surfaces associated to two harmonic functions (FH2A-surfaces), these surfaces satisfy a rela...

Descripción completa

Detalles Bibliográficos
Autores: C. Riveros, Carlos M., V. Corro, Armando M., P. de Araújo, Raquel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Trujillo
Repositorio:Revista UNITRU - Selecciones Matemáticas
Lenguaje:español
inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/2959
Enlace del recurso:http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959
Nivel de acceso:acceso abierto
Materia:Biharmonic surfaces
Harmonic surfaces
Gaussian curvature
Superfícies bi-harmonicas
Superfícies harmonicas
Curvatura Gaussiana
id 2306-6741_c1aa80dbd283943d6003f600c6d55f61
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/2959
network_acronym_str 2306-6741
network_name_str Revista UNITRU - Selecciones Matemáticas
spelling Graph-type biharmonic surfaces in R3Superfícies bi-harmonicas de tipo gráfico em R3C. Riveros, Carlos M.V. Corro, Armando M.P. de Araújo, RaquelBiharmonic surfacesHarmonic surfacesGaussian curvatureSuperfícies bi-harmonicasSuperfícies harmonicasCurvatura GaussianaIn this work, we study biharmonic surfaces that are parameterized by biharmonic coordinate functions. We study a class of biharmonic surfaces called graph-type biharmonic surfaces. Also, we define a class of surfaces associated to two harmonic functions (FH2A-surfaces), these surfaces satisfy a relation between the Gaussian curvature, the projection of the Gauss map on a fixed plane and two harmonic functions. We show that a particular class of graph-type biharmonic surfaces are FH2A-surfaces. Finally, we classify the FH2A-surfaces of rotation.Neste artigo, estudamos superfícies bi-harmonicas que sao parametrizadas por funcoes coordenadas biharmonicas. Estudamos uma classe de superfícies bi-harmonicas, chamadas superficies bi-harmonicas de tipo gráfico. Tambem, definimos uma classe de superfícies associadas a duas funcoes harmonicas (FH2Asurfaces), essas superfícies satisfazem uma relacao entre a curvatura Gaussiana, a projecao da aplicacao de Gauss sobre um plano fixo e duas funcoes harmonicas. Mostramos que uma classe particular de superfícies bi-harmonicas de tipo gráfico sao FH2A-surfaces. Finalmente, classificamos as FH2A-surfaces de rotacao.National University of Trujillo - Academic Department of Mathematics2020-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.unitru.edu.pe/index.php/SSMM/article/view/295910.17268/sel.mat.2020.01.08Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 97-107Selecciones Matemáticas; Vol. 7 No. 01 (2020): Enero-Julio; 97-107Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 97-1072411-1783reponame:Revista UNITRU - Selecciones Matemáticasinstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttp://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959/3288http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959/3803Derechos de autor 2020 Selecciones Matemáticasinfo:eu-repo/semantics/openAccess2021-03-03T15:25:19Zmail@mail.com -
dc.title.none.fl_str_mv Graph-type biharmonic surfaces in R3
Superfícies bi-harmonicas de tipo gráfico em R3
title Graph-type biharmonic surfaces in R3
spellingShingle Graph-type biharmonic surfaces in R3
C. Riveros, Carlos M.
Biharmonic surfaces
Harmonic surfaces
Gaussian curvature
Superfícies bi-harmonicas
Superfícies harmonicas
Curvatura Gaussiana
title_short Graph-type biharmonic surfaces in R3
title_full Graph-type biharmonic surfaces in R3
title_fullStr Graph-type biharmonic surfaces in R3
title_full_unstemmed Graph-type biharmonic surfaces in R3
title_sort Graph-type biharmonic surfaces in R3
dc.creator.none.fl_str_mv C. Riveros, Carlos M.
V. Corro, Armando M.
P. de Araújo, Raquel
author C. Riveros, Carlos M.
author_facet C. Riveros, Carlos M.
V. Corro, Armando M.
P. de Araújo, Raquel
author_role author
author2 V. Corro, Armando M.
P. de Araújo, Raquel
author2_role author
author
dc.subject.none.fl_str_mv Biharmonic surfaces
Harmonic surfaces
Gaussian curvature
Superfícies bi-harmonicas
Superfícies harmonicas
Curvatura Gaussiana
topic Biharmonic surfaces
Harmonic surfaces
Gaussian curvature
Superfícies bi-harmonicas
Superfícies harmonicas
Curvatura Gaussiana
dc.description.none.fl_txt_mv In this work, we study biharmonic surfaces that are parameterized by biharmonic coordinate functions. We study a class of biharmonic surfaces called graph-type biharmonic surfaces. Also, we define a class of surfaces associated to two harmonic functions (FH2A-surfaces), these surfaces satisfy a relation between the Gaussian curvature, the projection of the Gauss map on a fixed plane and two harmonic functions. We show that a particular class of graph-type biharmonic surfaces are FH2A-surfaces. Finally, we classify the FH2A-surfaces of rotation.
Neste artigo, estudamos superfícies bi-harmonicas que sao parametrizadas por funcoes coordenadas biharmonicas. Estudamos uma classe de superfícies bi-harmonicas, chamadas superficies bi-harmonicas de tipo gráfico. Tambem, definimos uma classe de superfícies associadas a duas funcoes harmonicas (FH2Asurfaces), essas superfícies satisfazem uma relacao entre a curvatura Gaussiana, a projecao da aplicacao de Gauss sobre um plano fixo e duas funcoes harmonicas. Mostramos que uma classe particular de superfícies bi-harmonicas de tipo gráfico sao FH2A-surfaces. Finalmente, classificamos as FH2A-surfaces de rotacao.
description In this work, we study biharmonic surfaces that are parameterized by biharmonic coordinate functions. We study a class of biharmonic surfaces called graph-type biharmonic surfaces. Also, we define a class of surfaces associated to two harmonic functions (FH2A-surfaces), these surfaces satisfy a relation between the Gaussian curvature, the projection of the Gauss map on a fixed plane and two harmonic functions. We show that a particular class of graph-type biharmonic surfaces are FH2A-surfaces. Finally, we classify the FH2A-surfaces of rotation.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959
10.17268/sel.mat.2020.01.08
url http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959
identifier_str_mv 10.17268/sel.mat.2020.01.08
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959/3288
http://revistas.unitru.edu.pe/index.php/SSMM/article/view/2959/3803
dc.rights.none.fl_str_mv Derechos de autor 2020 Selecciones Matemáticas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Selecciones Matemáticas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 97-107
Selecciones Matemáticas; Vol. 7 No. 01 (2020): Enero-Julio; 97-107
Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 97-107
2411-1783
reponame:Revista UNITRU - Selecciones Matemáticas
instname:Universidad Nacional de Trujillo
instacron:UNITRU
reponame_str Revista UNITRU - Selecciones Matemáticas
collection Revista UNITRU - Selecciones Matemáticas
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1693224944647798784
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).