Redes Neuronales de Base Radial aplicadas a la mejora de la calidad
Descripción del Articulo
Esta investigación ha permitido construir una Red Neuronal Artificial RNA con Función de Base Radial, y que utiliza la distancia de Mahalanobis RND, para la mejora de la calidad de diseño de procesos, obteniendo mejores resultados que los obtenidos con los análisis estadísticos tradicionales para lo...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2008 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revista UNMSM - Industrial Data |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/6052 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052 |
Nivel de acceso: | acceso abierto |
Materia: | Neural networks with radial basis Radial basis functions Neural networks of exact design Multilayer perceptron with backpropagation learning. Redes neuronales de base radial Funciones de base radial Redes neuronales de diseño exacto Perceptrón multicapa con aprendizaje backpropagation |
id |
1810-9993_0edb1377e7578d68422b510af9c187b7 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/6052 |
network_acronym_str |
1810-9993 |
repository_id_str |
. |
network_name_str |
Revista UNMSM - Industrial Data |
spelling |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidadNeural networks with radial basis applied to the improve of qualityCevallos Ampuero, JuanNeural networks with radial basisRadial basis functionsNeural networks of exact designMultilayer perceptron with backpropagation learning.Redes neuronales de base radialFunciones de base radialRedes neuronales de diseño exactoPerceptrón multicapa con aprendizaje backpropagationEsta investigación ha permitido construir una Red Neuronal Artificial RNA con Función de Base Radial, y que utiliza la distancia de Mahalanobis RND, para la mejora de la calidad de diseño de procesos, obteniendo mejores resultados que los obtenidos con los análisis estadísticos tradicionales para los diseños experimentales y las RNA ya existentes, para los casos que se trabaje con varias variables dependientes e independientes y en los que sus relaciones no sean lineales. Asimismo, al RND permite obtener parámetros de entrada para lograr un nivel de calidad deseado; para ello se aplica una metodología que usa las RNA Inversa y Directa a la vez.This research has led to construct an artificial neural network ARN with Radial Basis Function, and using Mahalanobis distance RND, for improving the quality of process design, which have performed better than those obtained with the for traditional statistical analysis of design of experiments and other RNA that already exist, for cases that are working with several independent and dependent variables in which its relations are not linear. It also allows with the RND obtain input parameters to achieve a desired level of quality, for it applies a methodology that uses RNAReverse and Direct at once.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2008-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/605210.15381/idata.v11i2.6052Industrial Data; Vol. 11 Núm. 2 (2008); 063-072Industrial Data; Vol 11 No 2 (2008); 063-0721810-99931560-9146reponame:Revista UNMSM - Industrial Datainstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052/5243Derechos de autor 2008 Juan Cevallos Ampuerohttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-01T17:25:26Zmail@mail.com - |
dc.title.none.fl_str_mv |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad Neural networks with radial basis applied to the improve of quality |
title |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
spellingShingle |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad Cevallos Ampuero, Juan Neural networks with radial basis Radial basis functions Neural networks of exact design Multilayer perceptron with backpropagation learning. Redes neuronales de base radial Funciones de base radial Redes neuronales de diseño exacto Perceptrón multicapa con aprendizaje backpropagation |
title_short |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
title_full |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
title_fullStr |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
title_full_unstemmed |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
title_sort |
Redes Neuronales de Base Radial aplicadas a la mejora de la calidad |
dc.creator.none.fl_str_mv |
Cevallos Ampuero, Juan |
author |
Cevallos Ampuero, Juan |
author_facet |
Cevallos Ampuero, Juan |
author_role |
author |
dc.subject.none.fl_str_mv |
Neural networks with radial basis Radial basis functions Neural networks of exact design Multilayer perceptron with backpropagation learning. Redes neuronales de base radial Funciones de base radial Redes neuronales de diseño exacto Perceptrón multicapa con aprendizaje backpropagation |
topic |
Neural networks with radial basis Radial basis functions Neural networks of exact design Multilayer perceptron with backpropagation learning. Redes neuronales de base radial Funciones de base radial Redes neuronales de diseño exacto Perceptrón multicapa con aprendizaje backpropagation |
dc.description.none.fl_txt_mv |
Esta investigación ha permitido construir una Red Neuronal Artificial RNA con Función de Base Radial, y que utiliza la distancia de Mahalanobis RND, para la mejora de la calidad de diseño de procesos, obteniendo mejores resultados que los obtenidos con los análisis estadísticos tradicionales para los diseños experimentales y las RNA ya existentes, para los casos que se trabaje con varias variables dependientes e independientes y en los que sus relaciones no sean lineales. Asimismo, al RND permite obtener parámetros de entrada para lograr un nivel de calidad deseado; para ello se aplica una metodología que usa las RNA Inversa y Directa a la vez. This research has led to construct an artificial neural network ARN with Radial Basis Function, and using Mahalanobis distance RND, for improving the quality of process design, which have performed better than those obtained with the for traditional statistical analysis of design of experiments and other RNA that already exist, for cases that are working with several independent and dependent variables in which its relations are not linear. It also allows with the RND obtain input parameters to achieve a desired level of quality, for it applies a methodology that uses RNAReverse and Direct at once. |
description |
Esta investigación ha permitido construir una Red Neuronal Artificial RNA con Función de Base Radial, y que utiliza la distancia de Mahalanobis RND, para la mejora de la calidad de diseño de procesos, obteniendo mejores resultados que los obtenidos con los análisis estadísticos tradicionales para los diseños experimentales y las RNA ya existentes, para los casos que se trabaje con varias variables dependientes e independientes y en los que sus relaciones no sean lineales. Asimismo, al RND permite obtener parámetros de entrada para lograr un nivel de calidad deseado; para ello se aplica una metodología que usa las RNA Inversa y Directa a la vez. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052 10.15381/idata.v11i2.6052 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052 |
identifier_str_mv |
10.15381/idata.v11i2.6052 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/6052/5243 |
dc.rights.none.fl_str_mv |
Derechos de autor 2008 Juan Cevallos Ampuero http://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2008 Juan Cevallos Ampuero http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Industrial Data; Vol. 11 Núm. 2 (2008); 063-072 Industrial Data; Vol 11 No 2 (2008); 063-072 1810-9993 1560-9146 reponame:Revista UNMSM - Industrial Data instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
reponame_str |
Revista UNMSM - Industrial Data |
collection |
Revista UNMSM - Industrial Data |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1701386356977041408 |
score |
13.882405 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).