Applicability study of a low cost seismic isolator prototype using recycled rubber
Descripción del Articulo
In order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | Revista UNI - Tecnia |
| Lenguaje: | español |
| OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/706 |
| Enlace del recurso: | http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706 |
| Nivel de acceso: | acceso abierto |
| id |
0375-7765_0280c79c9e5625712bc89d96d65188dd |
|---|---|
| oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/706 |
| network_acronym_str |
0375-7765 |
| repository_id_str |
. |
| network_name_str |
Revista UNI - Tecnia |
| dc.title.none.fl_str_mv |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| title |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| spellingShingle |
Applicability study of a low cost seismic isolator prototype using recycled rubber Muñoz, Andre |
| title_short |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| title_full |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| title_fullStr |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| title_full_unstemmed |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| title_sort |
Applicability study of a low cost seismic isolator prototype using recycled rubber |
| dc.creator.none.fl_str_mv |
Muñoz, Andre Diaz, Miguel Reyna, Roy |
| author |
Muñoz, Andre |
| author_facet |
Muñoz, Andre Diaz, Miguel Reyna, Roy |
| author_role |
author |
| author2 |
Diaz, Miguel Reyna, Roy |
| author2_role |
author author |
| dc.description.none.fl_txt_mv |
In order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake Engineering Research and Disaster Mitigation - CISMID, Peru. The raw material used to manufacture this device was recycled rubber tires; the rubber tire was cut into square shape sheets with 190mmx190mm of cross-section and a total thickness of around 11 mm. Rubber tire sheets were joined to each other by a vulcanization process, including rubber layers with 3mm of thickness made of recycled rubber tire powder in between rubber tire sheets; and in between the rubber tire sheet and the steel plate at both ends of the bearing. Two specimens were tested in a shaking table under a free vibration impulse or displacement in order to get their natural vibration frequency, natural period, and inherent damping. Then, to obtain the hysteretical behavior, a cyclic lateral reversal-loading test was conducted on three different specimens applying a constant axial load of 330MPa, 270MPa, and 220MPa respectively and a lateral displacement pattern with different levels of shear deformations up to the failure, which occurs at a shear strain of around 100%. From the experimental results, a nonlinear hysteretic behavior and energy dissipation were observed, decoupling the lateral movement. Finally, a numerical model was proposed to model the nonlinear hysteretic behavior of the RRSI based on a Modified Bouc-Wen model. This numerical model was simulated by using the specimens as base isolators for buildings. In order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake Engineering Research and Disaster Mitigation - CISMID, Peru. The raw material used to manufacture this device was recycled rubber tires; the rubber tire was cut into square shape sheets with 190mmx190mm of cross-section and a total thickness of around 11 mm. Rubber tire sheets were joined to each other by a vulcanization process, including rubber layers with 3mm of thickness made of recycled rubber tire powder in between rubber tire sheets; and in between the rubber tire sheet and the steel plate at both ends of the bearing. Two specimens were tested in a shaking table under a free vibration impulse or displacement in order to get their natural vibration frequency, natural period, and inherent damping. Then, to obtain the hysteretical behavior, a cyclic lateral reversal-loading test was conducted on three different specimens applying a constant axial load of 330MPa, 270MPa, and 220MPa respectively and a lateral displacement pattern with different levels of shear deformations up to the failure, which occurs at a shear strain of around 100%. From the experimental results, a nonlinear hysteretic behavior and energy dissipation were observed, decoupling the lateral movement. Finally, a numerical model was proposed to model the nonlinear hysteretic behavior of the RRSI based on a Modified Bouc-Wen model. This numerical model was simulated by using the specimens as base isolators for buildings. |
| description |
In order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake Engineering Research and Disaster Mitigation - CISMID, Peru. The raw material used to manufacture this device was recycled rubber tires; the rubber tire was cut into square shape sheets with 190mmx190mm of cross-section and a total thickness of around 11 mm. Rubber tire sheets were joined to each other by a vulcanization process, including rubber layers with 3mm of thickness made of recycled rubber tire powder in between rubber tire sheets; and in between the rubber tire sheet and the steel plate at both ends of the bearing. Two specimens were tested in a shaking table under a free vibration impulse or displacement in order to get their natural vibration frequency, natural period, and inherent damping. Then, to obtain the hysteretical behavior, a cyclic lateral reversal-loading test was conducted on three different specimens applying a constant axial load of 330MPa, 270MPa, and 220MPa respectively and a lateral displacement pattern with different levels of shear deformations up to the failure, which occurs at a shear strain of around 100%. From the experimental results, a nonlinear hysteretic behavior and energy dissipation were observed, decoupling the lateral movement. Finally, a numerical model was proposed to model the nonlinear hysteretic behavior of the RRSI based on a Modified Bouc-Wen model. This numerical model was simulated by using the specimens as base isolators for buildings. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-08-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion TECNIA Special Issue on Earthquake Engineering |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706 10.21754/tecnia.v29i2.706 |
| url |
http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706 |
| identifier_str_mv |
10.21754/tecnia.v29i2.706 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1108 http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1126 http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1146 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf audio/mpeg application/epub+zip |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.none.fl_str_mv |
TECNIA; Vol 29 No 2 (2019): Special Issue on Earthquake Engineering TECNIA; Vol. 29 Núm. 2 (2019): Edición especial en Ingeniería Sísmica 2309-0413 0375-7765 reponame:Revista UNI - Tecnia instname:Universidad Nacional de Ingeniería instacron:UNI |
| reponame_str |
Revista UNI - Tecnia |
| collection |
Revista UNI - Tecnia |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701108800441810944 |
| spelling |
Applicability study of a low cost seismic isolator prototype using recycled rubberMuñoz, AndreDiaz, MiguelReyna, RoyIn order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake Engineering Research and Disaster Mitigation - CISMID, Peru. The raw material used to manufacture this device was recycled rubber tires; the rubber tire was cut into square shape sheets with 190mmx190mm of cross-section and a total thickness of around 11 mm. Rubber tire sheets were joined to each other by a vulcanization process, including rubber layers with 3mm of thickness made of recycled rubber tire powder in between rubber tire sheets; and in between the rubber tire sheet and the steel plate at both ends of the bearing. Two specimens were tested in a shaking table under a free vibration impulse or displacement in order to get their natural vibration frequency, natural period, and inherent damping. Then, to obtain the hysteretical behavior, a cyclic lateral reversal-loading test was conducted on three different specimens applying a constant axial load of 330MPa, 270MPa, and 220MPa respectively and a lateral displacement pattern with different levels of shear deformations up to the failure, which occurs at a shear strain of around 100%. From the experimental results, a nonlinear hysteretic behavior and energy dissipation were observed, decoupling the lateral movement. Finally, a numerical model was proposed to model the nonlinear hysteretic behavior of the RRSI based on a Modified Bouc-Wen model. This numerical model was simulated by using the specimens as base isolators for buildings.In order to protect buildings against earthquakes that are categorized as "common" according to the Peruvian Earthquake Resistant Standard, a prototype of Recycled Rubber Seismic Isolator ("RRSI") was developed in the structural laboratory of the Japan-Peru Center for Earthquake Engineering Research and Disaster Mitigation - CISMID, Peru. The raw material used to manufacture this device was recycled rubber tires; the rubber tire was cut into square shape sheets with 190mmx190mm of cross-section and a total thickness of around 11 mm. Rubber tire sheets were joined to each other by a vulcanization process, including rubber layers with 3mm of thickness made of recycled rubber tire powder in between rubber tire sheets; and in between the rubber tire sheet and the steel plate at both ends of the bearing. Two specimens were tested in a shaking table under a free vibration impulse or displacement in order to get their natural vibration frequency, natural period, and inherent damping. Then, to obtain the hysteretical behavior, a cyclic lateral reversal-loading test was conducted on three different specimens applying a constant axial load of 330MPa, 270MPa, and 220MPa respectively and a lateral displacement pattern with different levels of shear deformations up to the failure, which occurs at a shear strain of around 100%. From the experimental results, a nonlinear hysteretic behavior and energy dissipation were observed, decoupling the lateral movement. Finally, a numerical model was proposed to model the nonlinear hysteretic behavior of the RRSI based on a Modified Bouc-Wen model. This numerical model was simulated by using the specimens as base isolators for buildings.Universidad Nacional de Ingeniería2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTECNIA Special Issue on Earthquake Engineeringapplication/pdfaudio/mpegapplication/epub+ziphttp://www.revistas.uni.edu.pe/index.php/tecnia/article/view/70610.21754/tecnia.v29i2.706TECNIA; Vol 29 No 2 (2019): Special Issue on Earthquake EngineeringTECNIA; Vol. 29 Núm. 2 (2019): Edición especial en Ingeniería Sísmica2309-04130375-7765reponame:Revista UNI - Tecniainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttp://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1108http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1126http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/706/1146info:eu-repo/semantics/openAccess2021-05-29T15:55:42Zmail@mail.com - |
| score |
13.860613 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).