Predicción de la demanda para un general sales service agent (GSSA) mediante regresión lineal simple
Descripción del Articulo
Pacific Feeder Services (PFS) es un agente general de venta de espacios aéreos de distintas aerolíneas; por ejemplo, Korean Air, Aeroméxico, Alitalia, Aerolíneas Argentinas y Gol. Estas aerolíneas no cuentan con infraestructura propia en el Perú, de modo que PFS actúa como representante de estas aer...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/655782 |
| Enlace del recurso: | http://hdl.handle.net/10757/655782 |
| Nivel de acceso: | acceso abierto |
| Materia: | Modelado de datos Regresión lineal simple Arquitectura de datos Data modeling Simple linear regression Data architecture https://purl.org/pe-repo/ocde/ford#5.02.00 https://purl.org/pe-repo/ocde/ford#5.02.04 |
| Sumario: | Pacific Feeder Services (PFS) es un agente general de venta de espacios aéreos de distintas aerolíneas; por ejemplo, Korean Air, Aeroméxico, Alitalia, Aerolíneas Argentinas y Gol. Estas aerolíneas no cuentan con infraestructura propia en el Perú, de modo que PFS actúa como representante de estas aerolíneas ante sus clientes. En el presente trabajo de investigación se utilizará la metodología iterativa de la ciencia de datos para abordar el problema relacionado a la demanda, puesto que esta es incierta en algunos meses del año. Para ello, se plantea la siguiente hipótesis: ¿Será una regresión lineal simple el modelo adecuado para realizar el pronóstico de los volúmenes de la demanda que tendrá PFS en los próximos meses? El objetivo por alcanzar será proyectar la demanda mediante una regresión lineal simple, para lo cual se está tomando como base los datos de los kilos exportados por PFS en el año 2019. Asimismo, el presente trabajo de investigación académico presenta una arquitectura de datos funcional y una arquitectura de datos tecnológica que da soporte al modelo de regresión lineal simple. La primera explica cuáles son los insumos, almacenamiento y consumo que se requieren para implementar el mencionado modelo, mientras que la segunda expone las herramientas del modelo. Finalmente, el trabajo acaba con las conclusiones y recomendaciones asociadas a la correcta implementación del modelo de regresión lineal simple en el caso específico de PFS. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).