Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
Descripción del Articulo
Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descript...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Señor de Sipan |
| Repositorio: | USS-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/15892 |
| Enlace del recurso: | https://www.scopus.com/pages/publications/85016474670 https://hdl.handle.net/20.500.12802/15892 |
| Nivel de acceso: | acceso abierto |
| Materia: | Coffee tree leaves Nutritional deficiencies Image processing Shape and textual description Supervised classifier https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
USSS_d0619372807e14240ae127a30d363b03 |
|---|---|
| oai_identifier_str |
oai:repositorio.uss.edu.pe:20.500.12802/15892 |
| network_acronym_str |
USSS |
| network_name_str |
USS-Institucional |
| repository_id_str |
4829 |
| dc.title.es_PE.fl_str_mv |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| dc.title.alternative.es_PE.fl_str_mv |
Detección automática de deficiencias nutricionales en hojas de cafeto mediante descriptores de forma y textura |
| title |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| spellingShingle |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors Vassallo-Barco, Marcelo Coffee tree leaves Nutritional deficiencies Image processing Shape and textual description Supervised classifier https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| title_full |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| title_fullStr |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| title_full_unstemmed |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| title_sort |
Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors |
| author |
Vassallo-Barco, Marcelo |
| author_facet |
Vassallo-Barco, Marcelo Vives-Garnique, Luis Tuesta-Monteza, Víctor Mejía-Cabrera, Heber I Yera Toledo, Raciel |
| author_role |
author |
| author2 |
Vives-Garnique, Luis Tuesta-Monteza, Víctor Mejía-Cabrera, Heber I Yera Toledo, Raciel |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Vassallo-Barco, Marcelo Vives-Garnique, Luis Tuesta-Monteza, Víctor Mejía-Cabrera, Heber I Yera Toledo, Raciel |
| dc.subject.es_PE.fl_str_mv |
Coffee tree leaves Nutritional deficiencies Image processing Shape and textual description Supervised classifier |
| topic |
Coffee tree leaves Nutritional deficiencies Image processing Shape and textual description Supervised classifier https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descriptors in images of coffee tree leaves. After the acquisition of images containing coffee tree leaves, they are subjected to a segmentation process using Otsu’s method. Afterwards, for the resulting images they are applied the descriptors Blurred Shape Model (BSM) and Gray-Level Co-occurrence Matrix (GLCM) for extracting characteristics of shape and texture. Finally, the obtained image representation is used for training KNN, Naïve Bayes and Neural Network classifiers by using the extracted features, in order to infer the type of deficiency presented in each analyzed image. The experimental results show that the developed procedure has a high accuracy, being the better results associated to the identification of Boron (B) and Iron (Fe) deficiencies. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-20T17:49:14Z |
| dc.date.available.none.fl_str_mv |
2025-10-20T17:49:14Z |
| dc.date.issued.fl_str_mv |
2017-02 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18. |
| dc.identifier.issn.none.fl_str_mv |
0972-7272 |
| dc.identifier.uri.none.fl_str_mv |
https://www.scopus.com/pages/publications/85016474670 https://hdl.handle.net/20.500.12802/15892 |
| identifier_str_mv |
Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18. 0972-7272 |
| url |
https://www.scopus.com/pages/publications/85016474670 https://hdl.handle.net/20.500.12802/15892 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Journal of Digital Information Management |
| dc.publisher.country.es_PE.fl_str_mv |
IN |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - USS Repositorio Institucional USS |
| dc.source.none.fl_str_mv |
reponame:USS-Institucional instname:Universidad Señor de Sipan instacron:USS |
| instname_str |
Universidad Señor de Sipan |
| instacron_str |
USS |
| institution |
USS |
| reponame_str |
USS-Institucional |
| collection |
USS-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/1/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/2/license.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/3/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.txt https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/4/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.jpg |
| bitstream.checksum.fl_str_mv |
efcf9dcf269239547c6c98e57ed36a9b 8a4605be74aa9ea9d79846c1fba20a33 202c8e4db6b0d6a6239e2baceeb8e91c 02e2fccc73405ff8a60a7444b444cfc2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Señor de Sipán |
| repository.mail.fl_str_mv |
repositorio@uss.edu.pe |
| _version_ |
1847152334192246784 |
| spelling |
Vassallo-Barco, MarceloVives-Garnique, LuisTuesta-Monteza, VíctorMejía-Cabrera, Heber IYera Toledo, Raciel2025-10-20T17:49:14Z2025-10-20T17:49:14Z2017-02Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18.0972-7272https://www.scopus.com/pages/publications/85016474670https://hdl.handle.net/20.500.12802/15892Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descriptors in images of coffee tree leaves. After the acquisition of images containing coffee tree leaves, they are subjected to a segmentation process using Otsu’s method. Afterwards, for the resulting images they are applied the descriptors Blurred Shape Model (BSM) and Gray-Level Co-occurrence Matrix (GLCM) for extracting characteristics of shape and texture. Finally, the obtained image representation is used for training KNN, Naïve Bayes and Neural Network classifiers by using the extracted features, in order to infer the type of deficiency presented in each analyzed image. The experimental results show that the developed procedure has a high accuracy, being the better results associated to the identification of Boron (B) and Iron (Fe) deficiencies.application/pdfengJournal of Digital Information ManagementINinfo:eu-repo/semantics/openAccessRepositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSCoffee tree leavesNutritional deficienciesImage processingShape and textual descriptionSupervised classifierhttps://purl.org/pe-repo/ocde/ford#2.02.04Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture DescriptorsDetección automática de deficiencias nutricionales en hojas de cafeto mediante descriptores de forma y texturainfo:eu-repo/semantics/articleORIGINALAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdfAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdfapplication/pdf897645https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/1/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdfefcf9dcf269239547c6c98e57ed36a9bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.txtAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.txtExtracted texttext/plain49486https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/3/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.txt202c8e4db6b0d6a6239e2baceeb8e91cMD53THUMBNAILAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.jpgAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.jpgGenerated Thumbnailimage/jpeg9735https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/4/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.jpg02e2fccc73405ff8a60a7444b444cfc2MD5420.500.12802/15892oai:repositorio.uss.edu.pe:20.500.12802/158922025-10-21 03:05:22.753Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.955691 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).