Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors

Descripción del Articulo

Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descript...

Descripción completa

Detalles Bibliográficos
Autores: Vassallo-Barco, Marcelo, Vives-Garnique, Luis, Tuesta-Monteza, Víctor, Mejía-Cabrera, Heber I, Yera Toledo, Raciel
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/15892
Enlace del recurso:https://www.scopus.com/pages/publications/85016474670
https://hdl.handle.net/20.500.12802/15892
Nivel de acceso:acceso abierto
Materia:Coffee tree leaves
Nutritional deficiencies
Image processing
Shape and textual description
Supervised classifier
https://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_d0619372807e14240ae127a30d363b03
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/15892
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
dc.title.alternative.es_PE.fl_str_mv Detección automática de deficiencias nutricionales en hojas de cafeto mediante descriptores de forma y textura
title Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
spellingShingle Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
Vassallo-Barco, Marcelo
Coffee tree leaves
Nutritional deficiencies
Image processing
Shape and textual description
Supervised classifier
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
title_full Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
title_fullStr Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
title_full_unstemmed Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
title_sort Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors
author Vassallo-Barco, Marcelo
author_facet Vassallo-Barco, Marcelo
Vives-Garnique, Luis
Tuesta-Monteza, Víctor
Mejía-Cabrera, Heber I
Yera Toledo, Raciel
author_role author
author2 Vives-Garnique, Luis
Tuesta-Monteza, Víctor
Mejía-Cabrera, Heber I
Yera Toledo, Raciel
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Vassallo-Barco, Marcelo
Vives-Garnique, Luis
Tuesta-Monteza, Víctor
Mejía-Cabrera, Heber I
Yera Toledo, Raciel
dc.subject.es_PE.fl_str_mv Coffee tree leaves
Nutritional deficiencies
Image processing
Shape and textual description
Supervised classifier
topic Coffee tree leaves
Nutritional deficiencies
Image processing
Shape and textual description
Supervised classifier
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descriptors in images of coffee tree leaves. After the acquisition of images containing coffee tree leaves, they are subjected to a segmentation process using Otsu’s method. Afterwards, for the resulting images they are applied the descriptors Blurred Shape Model (BSM) and Gray-Level Co-occurrence Matrix (GLCM) for extracting characteristics of shape and texture. Finally, the obtained image representation is used for training KNN, Naïve Bayes and Neural Network classifiers by using the extracted features, in order to infer the type of deficiency presented in each analyzed image. The experimental results show that the developed procedure has a high accuracy, being the better results associated to the identification of Boron (B) and Iron (Fe) deficiencies.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2025-10-20T17:49:14Z
dc.date.available.none.fl_str_mv 2025-10-20T17:49:14Z
dc.date.issued.fl_str_mv 2017-02
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18.
dc.identifier.issn.none.fl_str_mv 0972-7272
dc.identifier.uri.none.fl_str_mv https://www.scopus.com/pages/publications/85016474670
https://hdl.handle.net/20.500.12802/15892
identifier_str_mv Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18.
0972-7272
url https://www.scopus.com/pages/publications/85016474670
https://hdl.handle.net/20.500.12802/15892
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Journal of Digital Information Management
dc.publisher.country.es_PE.fl_str_mv IN
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
Repositorio Institucional USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
bitstream.url.fl_str_mv https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/1/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf
https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/2/license.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/3/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.txt
https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/4/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.jpg
bitstream.checksum.fl_str_mv efcf9dcf269239547c6c98e57ed36a9b
8a4605be74aa9ea9d79846c1fba20a33
202c8e4db6b0d6a6239e2baceeb8e91c
02e2fccc73405ff8a60a7444b444cfc2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1847152334192246784
spelling Vassallo-Barco, MarceloVives-Garnique, LuisTuesta-Monteza, VíctorMejía-Cabrera, Heber IYera Toledo, Raciel2025-10-20T17:49:14Z2025-10-20T17:49:14Z2017-02Vassallo-Barco, M., Vives-Garnique, L., Tuesta-Monteza, V., Mejía-Cabrera, H. I., & Yera Toledo, R. (2017). Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture Descriptors. Journal of Digital Information Management, 15(1), 7–18.0972-7272https://www.scopus.com/pages/publications/85016474670https://hdl.handle.net/20.500.12802/15892Nutritional deficiencies in coffee plants affect production and therefore it is important its early identification. The current research is focused on the automatic identification of nutritional deficiencies of Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), by using shape and texture descriptors in images of coffee tree leaves. After the acquisition of images containing coffee tree leaves, they are subjected to a segmentation process using Otsu’s method. Afterwards, for the resulting images they are applied the descriptors Blurred Shape Model (BSM) and Gray-Level Co-occurrence Matrix (GLCM) for extracting characteristics of shape and texture. Finally, the obtained image representation is used for training KNN, Naïve Bayes and Neural Network classifiers by using the extracted features, in order to infer the type of deficiency presented in each analyzed image. The experimental results show that the developed procedure has a high accuracy, being the better results associated to the identification of Boron (B) and Iron (Fe) deficiencies.application/pdfengJournal of Digital Information ManagementINinfo:eu-repo/semantics/openAccessRepositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSCoffee tree leavesNutritional deficienciesImage processingShape and textual descriptionSupervised classifierhttps://purl.org/pe-repo/ocde/ford#2.02.04Automatic Detection of Nutritional Deficiencies in Coffee Tree Leaves Through Shape and Texture DescriptorsDetección automática de deficiencias nutricionales en hojas de cafeto mediante descriptores de forma y texturainfo:eu-repo/semantics/articleORIGINALAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdfAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdfapplication/pdf897645https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/1/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdfefcf9dcf269239547c6c98e57ed36a9bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.txtAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.txtExtracted texttext/plain49486https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/3/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.txt202c8e4db6b0d6a6239e2baceeb8e91cMD53THUMBNAILAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.jpgAutomatic Detection of Nutritional Deficiencies In Coffee Tree Leaves.pdf.jpgGenerated Thumbnailimage/jpeg9735https://repositorio.uss.edu.pe/bitstream/20.500.12802/15892/4/Automatic%20Detection%20of%20Nutritional%20Deficiencies%20In%20Coffee%20Tree%20Leaves.pdf.jpg02e2fccc73405ff8a60a7444b444cfc2MD5420.500.12802/15892oai:repositorio.uss.edu.pe:20.500.12802/158922025-10-21 03:05:22.753Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.955691
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).