Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks

Descripción del Articulo

This article, refers to the research carried out at the National University Micaela Bastidas (UNAMBA), whose specific objectives were: To determine in a first stage of learning the proportion of accuracy of a classical architecture of Convolutionary Neural Network (CNN) in the identification of UNAM...

Descripción completa

Detalles Bibliográficos
Autores: Ordoñes Ramos, Erech, Mamani Vilca, Ecler, Mamani Coaquira, Yonatan
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Micaela Bastidas de Apurímac
Repositorio:UNAMBA-Institucional
Lenguaje:español
OAI Identifier:oai:172.16.0.151:UNAMBA/940
Enlace del recurso:http://repositorio.unamba.edu.pe/handle/UNAMBA/940
Nivel de acceso:acceso abierto
Materia:Recognition of people
Convolutional neural network
Deep learning
https://purl.org/pe-repo/ocde/ford#2.02.03
id UNMB_8c0deb212fdd65c8551b64101c89728e
oai_identifier_str oai:172.16.0.151:UNAMBA/940
network_acronym_str UNMB
network_name_str UNAMBA-Institucional
repository_id_str .
dc.title.es_PE.fl_str_mv Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
title Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
spellingShingle Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
Ordoñes Ramos, Erech
Recognition of people
Convolutional neural network
Deep learning
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
title_full Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
title_fullStr Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
title_full_unstemmed Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
title_sort Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networks
author Ordoñes Ramos, Erech
author_facet Ordoñes Ramos, Erech
Mamani Vilca, Ecler
Mamani Coaquira, Yonatan
author_role author
author2 Mamani Vilca, Ecler
Mamani Coaquira, Yonatan
author2_role author
author
dc.contributor.author.fl_str_mv Ordoñes Ramos, Erech
Mamani Vilca, Ecler
Mamani Coaquira, Yonatan
dc.subject.es_PE.fl_str_mv Recognition of people
Convolutional neural network
topic Recognition of people
Convolutional neural network
Deep learning
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.none.fl_str_mv Deep learning
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description This article, refers to the research carried out at the National University Micaela Bastidas (UNAMBA), whose specific objectives were: To determine in a first stage of learning the proportion of accuracy of a classical architecture of Convolutionary Neural Network (CNN) in the identification of UNAMBA peoples, to determine in a second stage the proportion of precision in a modern architecture of RNC and finally compare the first stage with the second, to find the highest proportion. The training was given with a quantity of 242 people. Therefore, 27,996 images had to be generated through the technique of Video Scraping and data augmentation, which were divided into 19,700 images for training and 8,296 for the validation. Regarding the results in the first stage, a modified model VGG16-UNAMBA is proposed, with which a ratio of 0.9721 accuracy was achieved; while in the second stage it is proposed to DenseNet121-UNAMBA, with which a proportion of 0.9943 accuracy was achieved. Coming to the conclusion that the use of deep learning allows UNAMBA staff to be identified in a high proportion of accuracy.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-05-14T21:19:40Z
dc.date.available.none.fl_str_mv 2021-05-14T21:19:40Z
dc.date.issued.fl_str_mv 2020-12-12
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv IEEE
dc.identifier.issn.none.fl_str_mv 2706-543X
dc.identifier.uri.none.fl_str_mv http://repositorio.unamba.edu.pe/handle/UNAMBA/940
dc.identifier.journal.es_PE.fl_str_mv C&T Riqchary
identifier_str_mv IEEE
2706-543X
C&T Riqchary
url http://repositorio.unamba.edu.pe/handle/UNAMBA/940
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional Micaela Bastidas de Apurímac
dc.source.es_PE.fl_str_mv Universidad Nacional Micaela Bastidas de Apurímac
Repositorio Institucional - UNAMBA
dc.source.none.fl_str_mv reponame:UNAMBA-Institucional
instname:Universidad Nacional Micaela Bastidas de Apurímac
instacron:UNAMBA
instname_str Universidad Nacional Micaela Bastidas de Apurímac
instacron_str UNAMBA
institution UNAMBA
reponame_str UNAMBA-Institucional
collection UNAMBA-Institucional
bitstream.url.fl_str_mv http://172.16.0.151/bitstream/UNAMBA/940/4/6-10.pdf.txt
http://172.16.0.151/bitstream/UNAMBA/940/3/license.txt
http://172.16.0.151/bitstream/UNAMBA/940/2/license_rdf
http://172.16.0.151/bitstream/UNAMBA/940/1/6-10.pdf
bitstream.checksum.fl_str_mv dc0ba338989d4e89429af738fc693368
c52066b9c50a8f86be96c82978636682
df76b173e7954a20718100d078b240a8
18563ea2d98383e2133fec0d729cf946
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace
repository.mail.fl_str_mv athos2777@gmail.com
_version_ 1814271631239938048
spelling Ordoñes Ramos, ErechMamani Vilca, EclerMamani Coaquira, Yonatan2021-05-14T21:19:40Z2021-05-14T21:19:40Z2020-12-12IEEE2706-543Xhttp://repositorio.unamba.edu.pe/handle/UNAMBA/940C&T RiqcharyThis article, refers to the research carried out at the National University Micaela Bastidas (UNAMBA), whose specific objectives were: To determine in a first stage of learning the proportion of accuracy of a classical architecture of Convolutionary Neural Network (CNN) in the identification of UNAMBA peoples, to determine in a second stage the proportion of precision in a modern architecture of RNC and finally compare the first stage with the second, to find the highest proportion. The training was given with a quantity of 242 people. Therefore, 27,996 images had to be generated through the technique of Video Scraping and data augmentation, which were divided into 19,700 images for training and 8,296 for the validation. Regarding the results in the first stage, a modified model VGG16-UNAMBA is proposed, with which a ratio of 0.9721 accuracy was achieved; while in the second stage it is proposed to DenseNet121-UNAMBA, with which a proportion of 0.9943 accuracy was achieved. Coming to the conclusion that the use of deep learning allows UNAMBA staff to be identified in a high proportion of accuracy.Submitted by Ecler Mamani (eclervirtual@gmail.com) on 2021-05-14T21:19:39Z No. of bitstreams: 2 license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5) 6-10.pdf: 6360166 bytes, checksum: 18563ea2d98383e2133fec0d729cf946 (MD5)Made available in DSpace on 2021-05-14T21:19:40Z (GMT). No. of bitstreams: 2 license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5) 6-10.pdf: 6360166 bytes, checksum: 18563ea2d98383e2133fec0d729cf946 (MD5) Previous issue date: 2020-12-12Paresapplication/pdfspaUniversidad Nacional Micaela Bastidas de Apurímacinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Nacional Micaela Bastidas de ApurímacRepositorio Institucional - UNAMBAreponame:UNAMBA-Institucionalinstname:Universidad Nacional Micaela Bastidas de Apurímacinstacron:UNAMBARecognition of peopleConvolutional neural networkDeep learninghttps://purl.org/pe-repo/ocde/ford#2.02.03Pedestrian identification through Deep Learning with classical and modern architecture of Convolutional Neural Networksinfo:eu-repo/semantics/articleTEXT6-10.pdf.txt6-10.pdf.txtExtracted texttext/plain25144http://172.16.0.151/bitstream/UNAMBA/940/4/6-10.pdf.txtdc0ba338989d4e89429af738fc693368MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81327http://172.16.0.151/bitstream/UNAMBA/940/3/license.txtc52066b9c50a8f86be96c82978636682MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81536http://172.16.0.151/bitstream/UNAMBA/940/2/license_rdfdf76b173e7954a20718100d078b240a8MD52ORIGINAL6-10.pdf6-10.pdfTexto completoapplication/pdf6360166http://172.16.0.151/bitstream/UNAMBA/940/1/6-10.pdf18563ea2d98383e2133fec0d729cf946MD51UNAMBA/940oai:172.16.0.151:UNAMBA/9402024-10-17 11:41:04.08DSpaceathos2777@gmail.com77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.955691
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).