Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)

Descripción del Articulo

In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records f...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez, Leonardo, Huerta, Adrian, Sabino, Evelin, Bourrel, Luc, Frappart, Frédéric, Lavado-Casimiro, W.
Formato: artículo
Fecha de Publicación:2023
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/3068
Enlace del recurso:https://hdl.handle.net/20.500.12542/3068
https://doi.org/10.3390/rs15225432
Nivel de acceso:acceso abierto
Materia:Rainfall Erosivity
Satellite Rainfall Product
Precipitación
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Aire y Atmósfera
id SEAM_af6190fee6b1d55321b9fbc77bf29146
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/3068
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
spellingShingle Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
Gutierrez, Leonardo
Rainfall Erosivity
Satellite Rainfall Product
Precipitación
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Aire y Atmósfera
title_short Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_full Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_fullStr Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_full_unstemmed Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_sort Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
author Gutierrez, Leonardo
author_facet Gutierrez, Leonardo
Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frédéric
Lavado-Casimiro, W.
author_role author
author2 Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frédéric
Lavado-Casimiro, W.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Gutierrez, Leonardo
Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frédéric
Lavado-Casimiro, W.
dc.subject.es_PE.fl_str_mv Rainfall Erosivity
Satellite Rainfall Product
Precipitación
topic Rainfall Erosivity
Satellite Rainfall Product
Precipitación
https://purl.org/pe-repo/ocde/ford#1.05.11
precipitacion - Aire y Atmósfera
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.es_PE.fl_str_mv precipitacion - Aire y Atmósfera
description In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for estimation. This study evaluates the performance of a new gridded dataset of and in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and obtained by the observed data. An average annual for Peru of 7840 MJ • mm • ha−1−1• h−1−1 was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-01-10T22:20:24Z
dc.date.available.none.fl_str_mv 2024-01-10T22:20:24Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format article
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/3068
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/rs15225432
dc.identifier.journal.es_PE.fl_str_mv Remote Sensing
dc.identifier.journal.none.fl_str_mv Remote Sensing
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/3068
https://hdl.handle.net/20.500.12542/3068
url https://hdl.handle.net/20.500.12542/3068
https://doi.org/10.3390/rs15225432
identifier_str_mv Remote Sensing
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:2072-4292
dc.rights.es_PE.fl_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/3/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/4/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/5/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpg
bitstream.checksum.fl_str_mv 976cde42e73a5b3fcd7157e04bc3bb3d
8a4605be74aa9ea9d79846c1fba20a33
56b786c3ab4ce95cace30ad1626ffeeb
bce80a05e7043ecc8d236aeb8e702df9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1847601869892878336
spelling Gutierrez, LeonardoHuerta, AdrianSabino, EvelinBourrel, LucFrappart, FrédéricLavado-Casimiro, W.2024-01-10T22:20:24Z2024-01-10T22:20:24Z2023https://hdl.handle.net/20.500.12542/3068https://doi.org/10.3390/rs15225432Remote SensingRemote Sensinghttps://hdl.handle.net/20.500.12542/3068https://hdl.handle.net/20.500.12542/3068In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for estimation. This study evaluates the performance of a new gridded dataset of and in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and obtained by the observed data. An average annual for Peru of 7840 MJ • mm • ha−1−1• h−1−1 was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.application/pdfspaMDPIPEurn:issn:2072-4292Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIRainfall ErosivitySatellite Rainfall ProductPrecipitaciónhttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Aire y AtmósferaRainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)info:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdfRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdfTexto Completoapplication/pdf41656865http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/3/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf976cde42e73a5b3fcd7157e04bc3bb3dMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txtRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txtExtracted texttext/plain28http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/4/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txt56b786c3ab4ce95cace30ad1626ffeebMD54THUMBNAILRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgGenerated Thumbnailimage/jpeg6619http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/5/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgbce80a05e7043ecc8d236aeb8e702df9MD5520.500.12542/3068oai:repositorio.senamhi.gob.pe:20.500.12542/30682025-10-23 17:05:04.928Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.121034
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).