Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
Descripción del Articulo
In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records f...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
| Repositorio: | SENAMHI-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/3068 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12542/3068 https://doi.org/10.3390/rs15225432 |
| Nivel de acceso: | acceso abierto |
| Materia: | Rainfall Erosivity Satellite Rainfall Product Precipitación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Aire y Atmósfera |
| id |
SEAM_af6190fee6b1d55321b9fbc77bf29146 |
|---|---|
| oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/3068 |
| network_acronym_str |
SEAM |
| network_name_str |
SENAMHI-Institucional |
| repository_id_str |
4818 |
| dc.title.es_PE.fl_str_mv |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| title |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| spellingShingle |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) Gutierrez, Leonardo Rainfall Erosivity Satellite Rainfall Product Precipitación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Aire y Atmósfera |
| title_short |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| title_full |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| title_fullStr |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| title_full_unstemmed |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| title_sort |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020) |
| author |
Gutierrez, Leonardo |
| author_facet |
Gutierrez, Leonardo Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frédéric Lavado-Casimiro, W. |
| author_role |
author |
| author2 |
Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frédéric Lavado-Casimiro, W. |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Gutierrez, Leonardo Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frédéric Lavado-Casimiro, W. |
| dc.subject.es_PE.fl_str_mv |
Rainfall Erosivity Satellite Rainfall Product Precipitación |
| topic |
Rainfall Erosivity Satellite Rainfall Product Precipitación https://purl.org/pe-repo/ocde/ford#1.05.11 precipitacion - Aire y Atmósfera |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
| dc.subject.sinia.es_PE.fl_str_mv |
precipitacion - Aire y Atmósfera |
| description |
In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for estimation. This study evaluates the performance of a new gridded dataset of and in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and obtained by the observed data. An average annual for Peru of 7840 MJ • mm • ha−1−1• h−1−1 was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-01-10T22:20:24Z |
| dc.date.available.none.fl_str_mv |
2024-01-10T22:20:24Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.sinia.es_PE.fl_str_mv |
text/publicacion cientifica |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
article |
| status_str |
acceptedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/3068 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/rs15225432 |
| dc.identifier.journal.es_PE.fl_str_mv |
Remote Sensing |
| dc.identifier.journal.none.fl_str_mv |
Remote Sensing |
| dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/3068 https://hdl.handle.net/20.500.12542/3068 |
| url |
https://hdl.handle.net/20.500.12542/3068 https://doi.org/10.3390/rs15225432 |
| identifier_str_mv |
Remote Sensing |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2072-4292 |
| dc.rights.es_PE.fl_str_mv |
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| rights_invalid_str_mv |
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
MDPI |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
| dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
| instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
| instacron_str |
SENAMHI |
| institution |
SENAMHI |
| reponame_str |
SENAMHI-Institucional |
| collection |
SENAMHI-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/3/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/2/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/4/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/5/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
976cde42e73a5b3fcd7157e04bc3bb3d 8a4605be74aa9ea9d79846c1fba20a33 56b786c3ab4ce95cace30ad1626ffeeb bce80a05e7043ecc8d236aeb8e702df9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
| repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
| _version_ |
1847601869892878336 |
| spelling |
Gutierrez, LeonardoHuerta, AdrianSabino, EvelinBourrel, LucFrappart, FrédéricLavado-Casimiro, W.2024-01-10T22:20:24Z2024-01-10T22:20:24Z2023https://hdl.handle.net/20.500.12542/3068https://doi.org/10.3390/rs15225432Remote SensingRemote Sensinghttps://hdl.handle.net/20.500.12542/3068https://hdl.handle.net/20.500.12542/3068In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (), which relates to precipitation. The requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for estimation. This study evaluates the performance of a new gridded dataset of and in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and obtained by the observed data. An average annual for Peru of 7840 MJ • mm • ha−1−1• h−1−1 was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.application/pdfspaMDPIPEurn:issn:2072-4292Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIRainfall ErosivitySatellite Rainfall ProductPrecipitaciónhttps://purl.org/pe-repo/ocde/ford#1.05.11precipitacion - Aire y AtmósferaRainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)info:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdfRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdfTexto Completoapplication/pdf41656865http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/3/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf976cde42e73a5b3fcd7157e04bc3bb3dMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txtRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txtExtracted texttext/plain28http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/4/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.txt56b786c3ab4ce95cace30ad1626ffeebMD54THUMBNAILRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgRainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgGenerated Thumbnailimage/jpeg6619http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3068/5/Rainfall-Erosivity-in-Peru-A-New-Gridded-Dataset-Based-on-GPM-IMERG_2023.pdf.jpgbce80a05e7043ecc8d236aeb8e702df9MD5520.500.12542/3068oai:repositorio.senamhi.gob.pe:20.500.12542/30682025-10-23 17:05:04.928Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.121034 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).