Detección de Turbidez en Plantas de Tratamiento de Agua Potable: Análisis entre YOLOv5x y YOLOv5n

Descripción del Articulo

Turbidity is a fundamental parameter for evaluating the quality of drinking water, as it directly affects the effectiveness of treatment processes. This study aims to compare the performance of two YOLOv5 model variants (YOLOv5x and YOLOv5n) in the automated detection of turbidity levels in drinking...

Descripción completa

Detalles Bibliográficos
Autores: Bernilla, Jose, Huaricallo, Yvan
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:revistasinvestigacion.unmsm.edu.pe:article/31012
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/31012
Nivel de acceso:acceso abierto
Materia:Object detection
Computer vision
Turbidity
Water quality
YOLOv5
Detección de objetos
Visión por computadora
Turbidez
Calidad del agua
Descripción
Sumario:Turbidity is a fundamental parameter for evaluating the quality of drinking water, as it directly affects the effectiveness of treatment processes. This study aims to compare the performance of two YOLOv5 model variants (YOLOv5x and YOLOv5n) in the automated detection of turbidity levels in drinking water treatment plants (PTAP). A dataset containing representative images of various turbidity levels was used and divided into two subsets: one for training and one for testing, following standard practices in computer vision tasks. The models were evaluated using key metrics such as precision, recall, and F1-Score, the latter being a combined measure that balances precision and sensitivity. YOLOv5x, designed for more complex tasks, demonstrated better overall performance, while YOLOv5n—a lighter variant—showed rapid convergence during training, making it suitable for resource-constrained environments. In conclusion, YOLOv5x is ideal for applications where precision is critical, whereas YOLOv5n is a more efficient option in less demanding scenarios. This study highlights the potential of artificial intelligence to improve water quality monitoring.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).