Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
Descripción del Articulo
The application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were char...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:revistasinvestigacion.unmsm.edu.pe:article/23130 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130 |
| Nivel de acceso: | acceso abierto |
| Materia: | alpaca fiber artificial intelligence Soft factor stochastic multiple regression fibra de alpaca inteligencia artificial, factor Soft regresión múltiple estocástica |
| id |
REVUNMSM_82870c4726f75f0fcc395a4ec8cefddf |
|---|---|
| oai_identifier_str |
oai:revistasinvestigacion.unmsm.edu.pe:article/23130 |
| network_acronym_str |
REVUNMSM |
| network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) Adaptación de inteligencia artificial por el modelo de regresión múltiple estocástica para determinar la calidad de la fibra de alpaca (Lama pacos) |
| title |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| spellingShingle |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) Portocarrero Banda, Abdel Alejandro alpaca fiber artificial intelligence Soft factor stochastic multiple regression fibra de alpaca inteligencia artificial, factor Soft regresión múltiple estocástica |
| title_short |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| title_full |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| title_fullStr |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| title_full_unstemmed |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| title_sort |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos) |
| dc.creator.none.fl_str_mv |
Portocarrero Banda, Abdel Alejandro Vilca Cayllahua, Eric Ortiz Quispe, Briguit Stefany Miranda Ramos, Lilia Mary Jiménez Pacheco, Hugo Guillermo Portocarrero Banda, Abdel Alejandro Vilca Cayllahua, Eric Ortiz Quispe, Briguit Stefany Miranda Ramos, Lilia Mary Jiménez Pacheco, Hugo Guillermo |
| author |
Portocarrero Banda, Abdel Alejandro |
| author_facet |
Portocarrero Banda, Abdel Alejandro Vilca Cayllahua, Eric Ortiz Quispe, Briguit Stefany Miranda Ramos, Lilia Mary Jiménez Pacheco, Hugo Guillermo |
| author_role |
author |
| author2 |
Vilca Cayllahua, Eric Ortiz Quispe, Briguit Stefany Miranda Ramos, Lilia Mary Jiménez Pacheco, Hugo Guillermo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
alpaca fiber artificial intelligence Soft factor stochastic multiple regression fibra de alpaca inteligencia artificial, factor Soft regresión múltiple estocástica |
| topic |
alpaca fiber artificial intelligence Soft factor stochastic multiple regression fibra de alpaca inteligencia artificial, factor Soft regresión múltiple estocástica |
| description |
The application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were characterized by optical microscopy and with the optical fibre diameter analyser (OFDA 100) equipment. Fibre diameter, medulla diameter, percentage of medullation by volume, comfort factor, and objectionable fibres were considered as independent variables, and the “Soft” factor was considered as a response variable. This last variable resulting from the difference in the comfort factor and objectionable fibres served to give a logical order to the data matrix and obtain an accurate prediction model. The average values were 26.80 ± 6.95 for the fibre diameter, 14.10 ± 5.92 for the medulla diameter, 24.75 ± 13.20 µm for the percentage of medullation by volume and 71.56 ± 13.04% for the comfort factor. The machine learning multiple linear regression modelling fitted a small sample size with high precision, showing minimal errors, and optimized with the stochastic gradient descent algorithm predicted a Soft factor very close to the observed Soft factor. It is concluded that the multiple linear regression technique with the stochastic approach satisfies the prediction of the new factor called "soft" and that it represents the appropriate modelling for the prediction of fibre quality in the textile industry. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-04-28 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130 10.15381/rivep.v34i2.23130 |
| url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130 |
| identifier_str_mv |
10.15381/rivep.v34i2.23130 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130/19484 |
| dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
| publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
| dc.source.none.fl_str_mv |
Revista de Investigaciones Veterinarias del Perú; Vol. 34 No. 2 (2023); e23130 Revista de Investigaciones Veterinarias del Perú; Vol. 34 Núm. 2 (2023); e23130 1682-3419 1609-9117 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
| instname_str |
Universidad Nacional Mayor de San Marcos |
| instacron_str |
UNMSM |
| institution |
UNMSM |
| reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
| collection |
Revistas - Universidad Nacional Mayor de San Marcos |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1848424278300557312 |
| spelling |
Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)Adaptación de inteligencia artificial por el modelo de regresión múltiple estocástica para determinar la calidad de la fibra de alpaca (Lama pacos)Portocarrero Banda, Abdel AlejandroVilca Cayllahua, EricOrtiz Quispe, Briguit StefanyMiranda Ramos, Lilia MaryJiménez Pacheco, Hugo GuillermoPortocarrero Banda, Abdel AlejandroVilca Cayllahua, EricOrtiz Quispe, Briguit StefanyMiranda Ramos, Lilia MaryJiménez Pacheco, Hugo Guillermoalpaca fiberartificial intelligenceSoft factorstochastic multiple regressionfibra de alpacainteligencia artificial,factor Softregresión múltiple estocásticaThe application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were characterized by optical microscopy and with the optical fibre diameter analyser (OFDA 100) equipment. Fibre diameter, medulla diameter, percentage of medullation by volume, comfort factor, and objectionable fibres were considered as independent variables, and the “Soft” factor was considered as a response variable. This last variable resulting from the difference in the comfort factor and objectionable fibres served to give a logical order to the data matrix and obtain an accurate prediction model. The average values were 26.80 ± 6.95 for the fibre diameter, 14.10 ± 5.92 for the medulla diameter, 24.75 ± 13.20 µm for the percentage of medullation by volume and 71.56 ± 13.04% for the comfort factor. The machine learning multiple linear regression modelling fitted a small sample size with high precision, showing minimal errors, and optimized with the stochastic gradient descent algorithm predicted a Soft factor very close to the observed Soft factor. It is concluded that the multiple linear regression technique with the stochastic approach satisfies the prediction of the new factor called "soft" and that it represents the appropriate modelling for the prediction of fibre quality in the textile industry.Se describe la aplicación de inteligencia artificial basada en el modelo de regresión lineal múltiple con gradiente descendiente estocástica con la finalidad de determinar la calidad de la fibra de alpaca Huacaya de color blanco. Se analizaron 1200 fibras correspondientes a seis muestras de alpaca. Las fibras se caracterizaron mediante microscopía óptica y con el equipo analizador óptico de diámetro de fibra (OFDA 100). Se consideraron como variables independientes al diámetro de fibra, diámetro de médula, porcentaje de medulación por volumen, factor de confort, fibras objetables y como variable de respuesta al factor “Soft”. Esta última variable resultante de la diferencia del factor de confort y fibras objetables sirvió para darle un ordenamiento lógico a la matriz de datos y obtener un modelo de predicción preciso. Los valores promedio fueron 26.80±6.95 para el diámetro de fibra, 14.10±5.92 en diámetro de medula, 24.75±13.20 μm para el porcentaje de medulación por volumen y 71.56± 13.04% para el factor de confort. El modelamiento de regresión lineal múltiple de machine learning se adaptó con gran precisión a un tamaño muestral pequeño, mostrando errores mínimos, y optimizado con el algoritmo de gradiente descendiente estocástico predijo un factor Soft muy cercano al factor Soft observado. Se concluye que la técnica de regresión lineal múltiple con el enfoque estocástico satisface la predicción del nuevo factor denominado “soft” y que representa el modelamiento adecuado para la predicción de calidad de fibras en la industria textil.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2023-04-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/2313010.15381/rivep.v34i2.23130Revista de Investigaciones Veterinarias del Perú; Vol. 34 No. 2 (2023); e23130Revista de Investigaciones Veterinarias del Perú; Vol. 34 Núm. 2 (2023); e231301682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130/19484Derechos de autor 2023 Abdel Alejandro Portocarrero Banda, Erik Vilca Cayllahua, Briguit Stefany Ortiz Quispe, Lilia Mary Miranda Ramos, Hugo Guillermo Jiménez Pachecohttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistasinvestigacion.unmsm.edu.pe:article/231302023-05-16T10:54:11Z |
| score |
13.919034 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).