Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)

Descripción del Articulo

The application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were char...

Descripción completa

Detalles Bibliográficos
Autores: Portocarrero Banda, Abdel Alejandro, Vilca Cayllahua, Eric, Ortiz Quispe, Briguit Stefany, Miranda Ramos, Lilia Mary, Jiménez Pacheco, Hugo Guillermo
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:revistasinvestigacion.unmsm.edu.pe:article/23130
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130
Nivel de acceso:acceso abierto
Materia:alpaca fiber
artificial intelligence
Soft factor
stochastic multiple regression
fibra de alpaca
inteligencia artificial,
factor Soft
regresión múltiple estocástica
id REVUNMSM_82870c4726f75f0fcc395a4ec8cefddf
oai_identifier_str oai:revistasinvestigacion.unmsm.edu.pe:article/23130
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
Adaptación de inteligencia artificial por el modelo de regresión múltiple estocástica para determinar la calidad de la fibra de alpaca (Lama pacos)
title Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
spellingShingle Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
Portocarrero Banda, Abdel Alejandro
alpaca fiber
artificial intelligence
Soft factor
stochastic multiple regression
fibra de alpaca
inteligencia artificial,
factor Soft
regresión múltiple estocástica
title_short Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
title_full Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
title_fullStr Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
title_full_unstemmed Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
title_sort Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)
dc.creator.none.fl_str_mv Portocarrero Banda, Abdel Alejandro
Vilca Cayllahua, Eric
Ortiz Quispe, Briguit Stefany
Miranda Ramos, Lilia Mary
Jiménez Pacheco, Hugo Guillermo
Portocarrero Banda, Abdel Alejandro
Vilca Cayllahua, Eric
Ortiz Quispe, Briguit Stefany
Miranda Ramos, Lilia Mary
Jiménez Pacheco, Hugo Guillermo
author Portocarrero Banda, Abdel Alejandro
author_facet Portocarrero Banda, Abdel Alejandro
Vilca Cayllahua, Eric
Ortiz Quispe, Briguit Stefany
Miranda Ramos, Lilia Mary
Jiménez Pacheco, Hugo Guillermo
author_role author
author2 Vilca Cayllahua, Eric
Ortiz Quispe, Briguit Stefany
Miranda Ramos, Lilia Mary
Jiménez Pacheco, Hugo Guillermo
author2_role author
author
author
author
dc.subject.none.fl_str_mv alpaca fiber
artificial intelligence
Soft factor
stochastic multiple regression
fibra de alpaca
inteligencia artificial,
factor Soft
regresión múltiple estocástica
topic alpaca fiber
artificial intelligence
Soft factor
stochastic multiple regression
fibra de alpaca
inteligencia artificial,
factor Soft
regresión múltiple estocástica
description The application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were characterized by optical microscopy and with the optical fibre diameter analyser (OFDA 100) equipment. Fibre diameter, medulla diameter, percentage of medullation by volume, comfort factor, and objectionable fibres were considered as independent variables, and the “Soft” factor was considered as a response variable. This last variable resulting from the difference in the comfort factor and objectionable fibres served to give a logical order to the data matrix and obtain an accurate prediction model. The average values were 26.80 ± 6.95 for the fibre diameter, 14.10 ± 5.92 for the medulla diameter, 24.75 ± 13.20 µm for the percentage of medullation by volume and 71.56 ± 13.04% for the comfort factor. The machine learning multiple linear regression modelling fitted a small sample size with high precision, showing minimal errors, and optimized with the stochastic gradient descent algorithm predicted a Soft factor very close to the observed Soft factor. It is concluded that the multiple linear regression technique with the stochastic approach satisfies the prediction of the new factor called "soft" and that it represents the appropriate modelling for the prediction of fibre quality in the textile industry.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130
10.15381/rivep.v34i2.23130
url https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130
identifier_str_mv 10.15381/rivep.v34i2.23130
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130/19484
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
dc.source.none.fl_str_mv Revista de Investigaciones Veterinarias del Perú; Vol. 34 No. 2 (2023); e23130
Revista de Investigaciones Veterinarias del Perú; Vol. 34 Núm. 2 (2023); e23130
1682-3419
1609-9117
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1848424278300557312
spelling Artificial intelligence adaptation by the stochastic multiple regression model to determine the fibre quality of alpaca (Lama pacos)Adaptación de inteligencia artificial por el modelo de regresión múltiple estocástica para determinar la calidad de la fibra de alpaca (Lama pacos)Portocarrero Banda, Abdel AlejandroVilca Cayllahua, EricOrtiz Quispe, Briguit StefanyMiranda Ramos, Lilia MaryJiménez Pacheco, Hugo GuillermoPortocarrero Banda, Abdel AlejandroVilca Cayllahua, EricOrtiz Quispe, Briguit StefanyMiranda Ramos, Lilia MaryJiménez Pacheco, Hugo Guillermoalpaca fiberartificial intelligenceSoft factorstochastic multiple regressionfibra de alpacainteligencia artificial,factor Softregresión múltiple estocásticaThe application of artificial intelligence based on the multiple linear regression model with stochastic descending gradient is described in order to determine the quality of the white Huacaya alpaca fibre. In total, 1200 fibres corresponding to six alpaca samples were analysed. The fibres were characterized by optical microscopy and with the optical fibre diameter analyser (OFDA 100) equipment. Fibre diameter, medulla diameter, percentage of medullation by volume, comfort factor, and objectionable fibres were considered as independent variables, and the “Soft” factor was considered as a response variable. This last variable resulting from the difference in the comfort factor and objectionable fibres served to give a logical order to the data matrix and obtain an accurate prediction model. The average values were 26.80 ± 6.95 for the fibre diameter, 14.10 ± 5.92 for the medulla diameter, 24.75 ± 13.20 µm for the percentage of medullation by volume and 71.56 ± 13.04% for the comfort factor. The machine learning multiple linear regression modelling fitted a small sample size with high precision, showing minimal errors, and optimized with the stochastic gradient descent algorithm predicted a Soft factor very close to the observed Soft factor. It is concluded that the multiple linear regression technique with the stochastic approach satisfies the prediction of the new factor called "soft" and that it represents the appropriate modelling for the prediction of fibre quality in the textile industry.Se describe la aplicación de inteligencia artificial basada en el modelo de regresión lineal múltiple con gradiente descendiente estocástica con la finalidad de determinar la calidad de la fibra de alpaca Huacaya de color blanco. Se analizaron 1200 fibras correspondientes a seis muestras de alpaca. Las fibras se caracterizaron mediante microscopía óptica y con el equipo analizador óptico de diámetro de fibra (OFDA 100). Se consideraron como variables independientes al diámetro de fibra, diámetro de médula, porcentaje de medulación por volumen, factor de confort, fibras objetables y como variable de respuesta al factor “Soft”. Esta última variable resultante de la diferencia del factor de confort y fibras objetables sirvió para darle un ordenamiento lógico a la matriz de datos y obtener un modelo de predicción preciso. Los valores promedio fueron 26.80±6.95 para el diámetro de fibra, 14.10±5.92 en diámetro de medula, 24.75±13.20 μm para el porcentaje de medulación por volumen y 71.56± 13.04% para el factor de confort. El modelamiento de regresión lineal múltiple de machine learning se adaptó con gran precisión a un tamaño muestral pequeño, mostrando errores mínimos, y optimizado con el algoritmo de gradiente descendiente estocástico predijo un factor Soft muy cercano al factor Soft observado. Se concluye que la técnica de regresión lineal múltiple con el enfoque estocástico satisface la predicción del nuevo factor denominado “soft” y que representa el modelamiento adecuado para la predicción de calidad de fibras en la industria textil.Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2023-04-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/2313010.15381/rivep.v34i2.23130Revista de Investigaciones Veterinarias del Perú; Vol. 34 No. 2 (2023); e23130Revista de Investigaciones Veterinarias del Perú; Vol. 34 Núm. 2 (2023); e231301682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/23130/19484Derechos de autor 2023 Abdel Alejandro Portocarrero Banda, Erik Vilca Cayllahua, Briguit Stefany Ortiz Quispe, Lilia Mary Miranda Ramos, Hugo Guillermo Jiménez Pachecohttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistasinvestigacion.unmsm.edu.pe:article/231302023-05-16T10:54:11Z
score 13.919034
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).